

Managing Kubernetes
Resources Using Helm
Second Edition

Simplifying how to build, package, and distribute applications
for Kubernetes

Andrew Block

Austin Dewey

BIRMINGHAM—MUMBAI

Managing Kubernetes Resources Using Helm
Second Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rahul Nair
Publishing Product Manager: Niranjan Naikwadi
Senior Editor: Arun Nadar
Content Development Editor: Adrija Mitra
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Book Project Manager: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Shankar Kalbhor
Marketing Coordinator: Nimisha Dua

First published: June 2020
Second Edition: September 2022

Production reference: 1070922

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80324-289-7

www.packt.com

https://www.packt.com

To the open source community for their ongoing support and collaboration.

– Andrew Block

To my wife, Lindsey, for her unwavering love and support.

– Austin Dewey

Foreword

This is an enjoyable and informative book about Helm, the Kubernetes Package Manager, from Andrew
Block and Austin Block. I do not know the authors personally, but can tell that they have a wealth of
knowledge and experience in the subject. Andrew Block recently became the core maintainer of the
Helm project, so to him I say: nice to have to you there!

This book is for all levels, from basic to advanced, and everyone will find useful information and tips
within it.

This book has three parts, starting with introduction to Kubernetes, and finishing with advanced
deployment patterns for Helm.

Part 1 will explain Kubernetes at a high level, alongside the basics of Kubernetes app installation
with kubectl. You will then learn what Helm is, and learn about its bases. This part of the book covers
how to decompose monolithic apps into smaller applications. You will learn how to setup a local
Kubernetes environment, install kubectl and Helm cli, and install, upgrade, and rollback your first
application with Helm.

If you are an advanced user, you can skip this part and move straight to Part 2.

Part 2 will take you through Helm charts development, dependency management, and a thorough
explanation of all chart templates. This part also covers Helm lifecycle hooks, which allow you to
extend helm charts to another level of usefulness. You’ll also learn how to publish charts to the Helm
repository and OCI registry. Finally, you’ll learn how to validate charts using helm lint locally and
against a live cluster.

I really recommend learning to use the chart testing tool. Making it part of your local and CI process
will save you a lot of time, as you won’t be looking for chart bugs at the end of your process.

Of course you aren’t going to write all the Helm charts you need during your normal working life,
as there are many Helm charts that have been written by the community or by existing companies.
However, understanding how to develop Helm charts will also allow you to use third party charts,
modify their values, and even enhance them too. It will also aid you in learning how to provide PRs
(pull requests) to the charts’ git repositories.

This section of the book is extremely valuable if you want to learn how to develop Helm charts, and
therefore should not be skipped.

In Part 3, you will learn how to automate Helm releases with CD and GitOps. There is a very detailed
explanation of how to do that with Argo CD (which happens to be my favourite GitOps Kubernetes
operator as well)

You will also learn about the Operator Framework, which is an advanced topic. This section covers
Kubernetes operator bases, how to create Helm operators, and how to manage them with Custom
Resources Definitions (CRDs) and Custom Recourses (CRs).

This part of the book also covers Helm security best practices, which is a very important topic. You’ll
also learn how to verify Helm binaries, how to sign and verify Helm charts, use secure images, and,
of course, how to set up charts resources requests and limits. Finally, you’ll also learn how to handle
secrets in Helm charts which is an important feature to know, as at the end Helm releases should be
deployed in the most secure way.

Rimantas Mocevicius “rimusz”

Helm Co-Founder

Author of kubectl: Command-Line Kubernetes in a Nutshell Book

Senior DevOps Engineer at JFrog Ltd (Nasdaq: FROG)

Contributors

About the authors
Andrew Block is a core maintainer on the Helm project and a Distinguished Architect at Red Hat. He
specializes in the use of continuous integration and continuous delivery methodologies to streamline
the delivery process and incorporate security at each stage. He works with organizations to adopt and
implement these technologies and concepts within their organization. As an open source enthusiast,
Andrew not only has authored several publications, but he is also a contributor to several open source
communities and a lead within the sigstore project, which aims at simplifying how software is signed
and verified.

Austin Dewey is a DevOps engineer focused on delivering a streamlined developer experience on
cloud and container technologies. Austin started his career with Red Hat’s consulting organization,
where he helped drive success at Fortune 500 companies by automating deployments on Red Hat’s
Kubernetes-based PaaS, OpenShift Container Platform. Currently, Austin works at fintech start-up
Prime Trust, where he builds automation to scale financial infrastructure and supports developers
on Kubernetes and AWS.

About the reviewers
Shashikant Bangera is a DevOps architect with 22 years of IT experience. His technical expertise
spans across digital transformation, DevOps, the cloud, and containerization. He has helped a wide
range of customers, from small, medium, and large businesses, with digital adoption for domains such
as banking, e-commerce, and retail. He has architected and implemented enterprise DevOps at a large
scale and also contributes to many open source platforms. He has authored and reviewed a number
of books on DevOps with Packt. Shashikant has also contributed to lots of blogs on DevOps. He has
designed an automated on-demand environment with a set of open source tools that is available on
GitHub. You can reach him on Twitter @shzshi.

Suraj S. Pujari is an accomplished customer engineer working with Microsoft India Corp. Ltd and
has more than 11 years of experience in the IT industry. He has extensive experience in working
with Azure app and infrastructure technologies. From his work as a systems engineer with one of
the largest Indian multi-national corporations, his career has evolved through constant learning and
applying his inquisitive side.

I would like to express my gratitude to my mom, Vidya, and wife, Pooja, who
had to look after my 20-month-old son, Likhit, while I was busy reviewing this
book. A big shoutout to all my friends and colleagues who have encouraged me to
review books.

Table of Contents
Preface xv

Part 1: Introduction and Setup 1

1
Understanding Kubernetes and Helm 3

From monoliths to modern
microservices 4
What is Kubernetes? 5
Container orchestration 6
HA 7
Scalability 7
Active community 7

Deploying a Kubernetes application 8
Approaches to resource management 9
Imperative and declarative configurations 9

Resource configuration challenges 13

The many types of Kubernetes resources 13
Keeping live and local states in sync 14
Application life cycles are hard to manage 14
Resource files are static 14

Helm to the rescue! 15
Understanding package managers 16
The Kubernetes package manager 17
The benefits of Helm 18

Summary 21
Further reading 21
Questions 21

2
Preparing a Kubernetes and Helm Environment 23

Technical requirements 23
Preparing a local Kubernetes
environment with minikube 24
Installing minikube 24
Installing VirtualBox 26

Configuring VirtualBox as the default driver 27
Configuring minikube resource allocation 28
Exploring the basic usage of minikube 28

Setting up kubectl 29
Installing kubectl 30

Table of Contentsx

Setting up Helm 33
Installing Helm 33

Configuring Helm 34
Adding upstream repositories 34
Adding plugins 36
Environment variables 37

Tab completion 38
Authentication 39
Authorization/RBAC 41

Summary 42
Further reading 42
Questions 43

3
Installing Your First App with Helm 45

Technical requirements 46
Understanding the WordPress
application 46
Finding a WordPress chart 47
Searching for WordPress charts from the
command line 48
Viewing the WordPress chart in a browser 49
Bitnami repository chart retention policy 50
 Adding the full Bitnami repository 51
Showing the WordPress chart information
from the command line 52

Creating a Kubernetes environment 54
Installing a WordPress chart 55
Creating a values file for configuration 55
Running the installation 58
Inspecting your release 60

Choosing between --set and --values 65
Accessing the WordPress application 66
Upgrading the WordPress release 70
Modifying the Helm values 70
Running the upgrade 71
Reusing and resetting values during an upgrade 73

Rolling back the WordPress release 74
Inspecting the WordPress history 74
Running the rollback 76

Uninstalling the WordPress release 78
Shutting down your environment 79
Summary 79
Further reading 79
Questions 80

Part 2: Helm Chart Development 81

4
Scaffolding a New Helm Chart 83

Technical requirements 83
Understanding the Guestbook
application 84

Understanding the YAML format 85
Defining key-value pairs 85
Value types 86

Table of Contents xi

The JSON format 87

Scaffolding the Guestbook Helm chart 88
Deploying the scaffolded
Guestbook chart 91
Understanding the Chart.yaml file 94

Updating the Guestbook
Chart.yaml file 99
Summary 99
Further reading 100
Questions 100

5
Helm Dependency Management 101

Technical requirements 102
Declaring chart dependencies 102
The dependencies map 103
Downloading chart dependencies 104
Creating conditionals 108

Altering dependency names
and values 112
Updating the guestbook Helm chart 117
Cleaning up 119
Summary 119
Further reading 119
Questions 120

6
Understanding Helm Templates 121

Technical requirements 122
Helm template basics 122
Template values 124
Built-in objects 125
The .Release object 127
The .Chart object 128
The .Template object 130
The .Capabilities object 130
The .Files object 131

Helm template functions 133
Helm template control structures 140
Generating release notes 145
Helm template variables 146

Helm template validation 148
The fail function 148
The required function 150
The values.schema.json file 151

Enabling code reuse with named
templates and library charts 153
Creating CRDs 155
Post rendering 156
Updating and deploying the
Guestbook chart 158
Updating Redis values 158
Updating Guestbook’s deployment template
and values.yaml file 158
Deploying the Guestbook chart 160

Table of Contentsxii

Summary 161
Further reading 161

Questions 162

7
Helm Lifecycle Hooks 163

Technical requirements 164
The basics of a Helm hook 164
Helm hook life cycle 167
Helm hook cleanup 169
Writing hooks in the Guestbook
Helm chart 170
Creating the pre-upgrade hook
to take a data snapshot 171

Creating the pre-rollback hook to
restore the database 174
Executing the life cycle hooks 178

Cleaning up 180
Summary 180
Further reading 181
Questions 181

8
Publishing to a Helm Chart Repository 183

Technical requirements 183
Understanding Helm chart
repositories 184
Publishing to an HTTP repository 184
Creating a GitHub Pages repository 185
Publishing the Guestbook chart 187

Publishing to an OCI registry 190
Pulling the OCI Guestbook chart 193

Summary 194
Further reading 194
Questions 194

9
Testing Helm Charts 195

Technical requirements 195
Setting up your environment 196
Verifying Helm templating 196
Validating template generation locally with
helm template 196

Adding server-side validation
to chart rendering 198
Linting Helm charts and templates 199

Testing in a live cluster 202
Running the chart test 203

Table of Contents xiii

Improving chart tests with the Chart
Testing tool 205
Introducing the Chart Testing project 206
Installing the Chart Testing tools 208
Running the lint-and-install command 211

Cleaning up 214
Summary 214
Further reading 215
Questions 215

Part 3: Advanced Deployment Patterns 217

10
Automating Helm with CD and GitOps 219

Technical requirements 220
Understanding CI/CD and GitOps 220
CI/CD 220
Taking CI/CD to the next level using GitOps 221

Setting up your environment 222
Installing Argo CD 222
Deploying a Helm chart from
a Git repository 225

Deploying an application from a
remote Helm chart repository 229
Deploying a Helm chart to
multiple environments 230
Cleaning up 234
Summary 234
Questions 235

11
Using Helm with the Operator Framework 237

Technical requirements 238
Understanding Kubernetes operators 238
Understanding the Guestbook
operator control loop 239
Preparing a local development environment 240
Scaffolding the operator file structure 242
Building the operator image 243
Deploying the Guestbook operator 246

Deploying the Guestbook application 250

Using Helm to manage operators,
CRDs, and CRs 252
Cleaning up 253
Summary 254
Further reading 254
Questions 254

Table of Contentsxiv

12
Helm Security Considerations 255

Technical requirements 255
Data provenance and integrity 256
Creating a GPG key pair 257
Verifying Helm downloads 259
Signing and verifying Helm charts 263

Developing secure and stable
Helm charts 266
Using secure images 266

Setting resource requests and limits 268
Handling secrets in Helm charts 270

Configuring RBAC rules 272
Accessing secure chart repositories 274

Summary 276
Further reading 277
Questions 277

Index 279

Other Books You May Enjoy 288

Preface

Containerization is currently known to be one of the best ways to implement DevOps. While Docker
introduced containers and changed the DevOps era, Google developed an extensive container
orchestration system, Kubernetes, which is now considered the industry standard. With the help of
this book, you’ll explore the efficiency of managing applications running on Kubernetes using Helm.

Starting with a brief introduction to Helm and its impact on users working with containers and
Kubernetes, you’ll delve into the primitives of Helm charts and its overall architecture and use cases.
From there, you’ll learn how to write Helm charts in order to automate application deployment on
Kubernetes and work your way toward more advanced strategies. These enterprise-ready patterns
are focused on concepts beyond the basics so that you can get the most out of Helm, including topics
related to automation, application development, delivery, life cycle management, and security.

By the end of this book, you’ll have learned how to leverage Helm to build, deploy, and manage
applications on Kubernetes.

Who this book is for
This book is for Kubernetes developers or administrators who are interested in learning Helm to
provide automation for app development on Kubernetes. Although no prior knowledge of Helm is
required, basic knowledge of Kubernetes application development will be useful.

What this book covers
Chapter 1, Understanding Kubernetes and Helm, is where you learn about the challenges involved in
deploying Kubernetes applications and how Helm can be used to simplify the deployment process.

Chapter 2, Preparing a Kubernetes and Helm Environment, is where you learn how to configure a local
development environment. In this chapter, you will download Minikube and Helm. You will also learn
basic Helm configurations.

Chapter 3, Installing Your First App with Helm, teaches you the ins and outs of the main Helm commands
by having you deploy your first Helm chart.

Chapter 4, Scaffolding a New Helm Chart, is about how Helm charts are structured and helps you
scaffold your own Helm chart.

Chapter 5, Helm Dependency Management, is where you learn how to manage and use dependencies
to build and manage complex application deployments.

Prefacexvi

Chapter 6, Understanding Helm Templates, explores Helm templates and how to dynamically generate
Kubernetes resources.

Chapter 7, Helm Lifecycle Hooks, is about lifecycle hooks and how to deploy arbitrary resources at
different Helm lifecycle phases.

Chapter 8, Publishing to a Helm Chart Repository, teaches you about Helm chart repositories and how
they can be used to publish Helm charts.

Chapter 9, Testing Helm Charts, is about different strategies for testing Helm charts during Helm
chart development.

Chapter 10, Automating Helm with CD and GitOps, looks at how to automate Helm deployments using
continuous delivery and GitOps methodologies.

Chapter 11, Using Helm with the Operator Framework, covers how to create a Helm operator using
the operator-sdk toolkit.

Chapter 12, Helm Security Considerations, is about different security topics as they relate to Helm
releases, charts, and repositories.

To get the most out of this book
To get the most out of this book, you should install the technologies in the following table to follow
along with the examples. While these are the versions that were used during writing, the latest versions
should work as well.

Software/hardware covered in the book Operating system requirements
Minikube v1.22.0 Windows, macOS, or Linux
VirtualBox 6.1.26 Windows, macOS, or Linux
Kubectl v1.21.2 Windows, macOS, or Linux
Helm v3.6.3 Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Managing-Kubernetes-Resources-using-Helm. If there’s an
update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm

Download the color images xvii

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/zeDY0.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Notice
that a space is missing between the colon and the LearnHelm string.”

A block of code is set as follows:

configuration: |

 server.port=8443

 logging.file.path=/var/log

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

$ cd ~

$ git clone <repository URI>

Any command-line input or output is written as follows:

$ helm dependency update chapter8/guestbook

$ helm package guestbook chapter8/guestbook

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Click the Generate Token button to
create the token.”

Tips or Important Notes
Appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/zeDY0

Prefacexviii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Managing Kubernetes Resources using Helm, Second Edition, we’d love to hear
your thoughts! Please click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://customercare@packtpub.com
https://customercare@packtpub.com
https://www.packtpub.com/support/errata
https://copyright@packt.com
https://authors.packtpub.com
https://packt.link/r/1803242892

Part 1:
Introduction

and Setup

Kubernetes is a robust system with complex configurations. In Part 1, you will learn how Helm
addresses such complexities by providing a package manager interface. By the end of this part,
you will have gained hands-on experience by deploying your first Helm chart.

In this part, we will cover the following topics:

• Chapter 1, Understanding Kubernetes and Helm

• Chapter 2, Preparing a Kubernetes and Helm Environment

• Chapter 3, Installing Your First App with Helm

1
Understanding

Kubernetes and Helm

Thank you for choosing this book, Learn Helm. If you are interested in this book, you are probably
aware of the challenges that modern applications bring. Teams face tremendous pressure to ensure
that applications are lightweight and scalable. Applications must also be highly available and able to
withstand varying loads. Historically, applications have most commonly been deployed as monoliths
or large, single-tiered applications served on a single system. As time has progressed, the industry
has shifted toward a microservice approach or small, multi-tiered applications served on multiple
systems. Often deployed using container technology, the industry has started leveraging tools such
as Kubernetes to orchestrate and scale their containerized microservices.

Kubernetes, however, comes with its own set of challenges. While it is an effective container orchestration
tool, it presents a steep learning curve that can be difficult for teams to overcome. One tool that helps
simplify the challenges of running workloads on Kubernetes is Helm. Helm allows users to more simply
deploy and manage the life cycle of Kubernetes applications. It abstracts many of the complexities
behind configuring Kubernetes applications and allows teams to be more productive on the platform.

In this book, you will explore each of the benefits offered by Helm and discover how Helm makes
application deployment much simpler on Kubernetes. You will first assume the role of an end user,
consuming Helm charts written by the community and learning the best practices behind leveraging
Helm as a package manager. As this book progresses, you will assume the role of a chart developer
and learn how to package Kubernetes applications in ways that are easily consumable and efficient.
Toward the end of this book, you’ll learn about advanced patterns around application management
and security with Helm.

In this chapter, we will cover the following main topics:

• From monoliths to modern microservices

• What is Kubernetes?

• Deploying a Kubernetes application

Understanding Kubernetes and Helm4

• Approaches to resource management

• Resource configuration challenges

• Helm to the rescue!

From monoliths to modern microservices
Software applications are a fundamental component of most modern technology. Whether they take
the form of a word processor, web browser, or streaming service, they enable user interaction to
complete one or more tasks. Applications have a long and storied history, from the days of Electronic
Numerical Integrator and Computer (ENIAC)—the first general-purpose computer—to taking
man to the moon in the Apollo space missions, to the rise of the World Wide Web (WWW), social
media, and online retail.

These applications can operate on a wide range of platforms and systems, leveraging either physical or
virtual computing resources. Depending on their purpose and resource requirements, entire machines
may be dedicated to serving the compute and/or storage needs of an application. Fortunately, thanks
in part to the realization of Moore’s law, the power and performance of microprocessors initially
increased with each passing year, along with the overall cost associated with the physical resources
used. This trend has subsided in recent years, but the advent of this trend and its persistence for the
first 30 years of the existence of processors was instrumental to the advances in technology.

Software developers took full advantage of this opportunity and bundled more features and components
into their applications. As a result, a single application could consist of several smaller components, each
of which, on its own, could be written as its own individual services. Initially, bundling components
together yielded several benefits, including a simplified deployment process. However, as industry
trends began to change and businesses focused more on the ability to deliver features more rapidly, the
design of a single deployable application brought with it a number of challenges. Whenever a change
was required, the entire application and all of its underlying components needed to be validated once
again to ensure the change had no adverse features. This process potentially required coordination from
multiple teams, which slowed the overall delivery of the feature.

Delivering features more rapidly, especially across traditional divisions within organizations, was
also something that organizations wanted. This concept of rapid delivery is fundamental to a practice
called development-operations (DevOps), whose rise in popularity occurred around 2010. DevOps
encouraged more iterative changes to applications over time, instead of extensive planning prior to
development. In order to be sustainable in this new model, architectures evolved from being a single
large application to instead favoring several smaller applications that could be delivered faster. Because
of this change in thinking, the more traditional application design was labeled as monolithic. This new
approach of breaking components down into separate applications coined a name for these components:
microservices. The traits that were inherent in microservices applications brought with them several
desirable features, including the ability to develop and deploy services concurrently from one another
as well as to scale them (increase the number of instances) independently.

What is Kubernetes? 5

The change in software architecture from monolithic to microservices also resulted in re-evaluating
how applications are packaged and deployed at runtime. Traditionally, entire machines were dedicated
to either one or two applications. Now, as microservices resulted in the overall reduction of resources
required for a single application, dedicating an entire machine to one or two microservices was no
longer viable.

Fortunately, a technology called containers was introduced and gained popularity in filling in the gaps
for many missing features needed to create a microservices runtime environment. Red Hat defines a
container as “a set of one or more processes that are isolated from the rest of the system and includes all of
the files necessary to run”(https://www.redhat.com/en/topics/containers/whats-a-
linux-container#:~:text=A%20Linux%C2%AE%20container%20is,testing%2C%20
and%20finally%20to%20production.). Containerized technology has a long history in
computing, dating back to the 1970s. Many of the foundational container technologies, including chroots
(the ability to change the root directory of a process and any of its children to a new location on the
filesystem) and jails, are still in use today.

The combination of a simple and portable packaging model, along with the ability to create many
isolated sandboxes on each physical machine or virtual machine (VM), led to the rapid adoption
of containers in the microservices space. This rise in container popularity in the mid-2010s can also
be attributed to Docker, which brought containers to the masses through simplified packaging and
runtimes that could be utilized on Linux, macOS, and Windows. The ability to distribute container
images with ease led to the increase in the popularity of container technologies. This was because
first-time users did not need to know how to create images but instead could make use of existing
images that were created by others.

Containers and microservices became a match made in heaven. Applications had a packaging and
distribution mechanism, along with the ability to share the same compute footprint while taking
advantage of being isolated from one another. However, as more and more containerized microservices
were deployed, the overall management became a concern. How do you ensure the health of each
running container? What do you do if a container fails? What happens if your underlying machine
does not have the compute capacity required? Enter Kubernetes, which helped answer this need for
container orchestration.

In the next section, we will discuss how Kubernetes works and provides value to an enterprise.

What is Kubernetes?
Kubernetes, often abbreviated as k8s (pronounced as kaytes), is an open source container orchestration
platform. Originating from Google’s proprietary orchestration tool, Borg, the project was open sourced
in 2015 and was renamed Kubernetes. Following the v1.0 release on July 21, 2015, Google and the
Linux Foundation partnered to form the Cloud Native Computing Foundation (CNCF), which acts
as the current maintainer of the Kubernetes project.

https://www.redhat.com/en/topics/containers/whats-a-linux-container#:~:text=A%20Linux%C2%AE%20container%20is,testing%2C%20and%20finally%20to%20production
https://www.redhat.com/en/topics/containers/whats-a-linux-container#:~:text=A%20Linux%C2%AE%20container%20is,testing%2C%20and%20finally%20to%20production
https://www.redhat.com/en/topics/containers/whats-a-linux-container#:~:text=A%20Linux%C2%AE%20container%20is,testing%2C%20and%20finally%20to%20production

Understanding Kubernetes and Helm6

The word Kubernetes is a Greek word, meaning helmsman or pilot. A helmsman is a person who is in
charge of steering a ship and works closely with the ship’s officer to ensure a safe and steady course,
along with the overall safety of the crew. Having similar responsibilities with regard to containers and
microservices, Kubernetes is in charge of the orchestration and scheduling of containers. It is in charge
of steering those containers to proper worker nodes that can handle their workloads. Kubernetes will also
help ensure the safety of those microservices by providing high availability (HA) and health checks.

Let’s review some of the ways Kubernetes helps simplify the management of containerized workloads.

Container orchestration

The most prominent feature of Kubernetes is container orchestration. This is a fairly loaded term, so
we’ll break it down into different pieces.

Container orchestration is about placing containers on certain machines from a pool of compute
resources based on their requirements. The simplest use case for container orchestration is for deploying
containers on machines that can handle their resource requirements. In the following diagram, there
is an application that requests 2 Gibibytes (Gi) of memory (Kubernetes resource requests typically
use their power-of-two values, which in this case is roughly equivalent to 2 gigabytes (GB)) and one
central processing unit (CPU) core. This means that the container will be allocated 2 Gi of memory
and 1 CPU core from the underlying machine that it is scheduled on. It is up to Kubernetes to track
which machines, or nodes, have the required resources available and to place an incoming container
on that machine. If a node does not have enough resources to satisfy the request, the container will
not be scheduled on that node. If none of the nodes in a cluster have enough resources to run the
workload, the container will not be deployed. Once a node has enough resources free, the container
will be deployed on the node with sufficient resources:

Figure 1.1 – Kubernetes orchestration and scheduling

What is Kubernetes? 7

Container orchestration relieves you of the effort required to track the available resources on machines.
Kubernetes and other monitoring tools provide insight into these metrics. So, a developer can simply
declare the number of resources they expect a container to use, and Kubernetes will take care of the
rest on the backend.

HA

Another benefit of Kubernetes is that it provides features that help take care of redundancy and HA.
HA is a characteristic that prevents application downtime. It’s performed by a load balancer, which
splits incoming traffic across multiple instances of an application. The premise of HA is that if one
instance of an application goes down, other instances are still available to accept incoming traffic. In
this regard, downtime is avoided, and the end user—whether a human or another microservice—
remains completely unaware that there was a failed instance of the application. Kubernetes provides
a networking mechanism, called a service, that allows applications to be load-balanced. We will talk
about services in greater detail later on, in the Deploying a Kubernetes application section of this chapter.

Scalability

Given the lightweight nature of containers and microservices, developers can use Kubernetes to rapidly
scale their workloads, both horizontally and vertically.

Horizontal scaling is the act of deploying more container instances. If a team running their workloads
on Kubernetes were expecting increased load, they could simply tell Kubernetes to deploy more
instances of their application. Since Kubernetes is a container orchestrator, developers would not
need to worry about the physical infrastructure that those applications would be deployed on. It
would simply locate a node within the cluster with the available resources and deploy the additional
instances there. Each extra instance would be added to a load-balancing pool, which would allow the
application to continue to be highly available.

Vertical scaling is the act of allocating additional memory and CPU to an application. Developers
can modify the resource requirements of their applications while they are running. This will prompt
Kubernetes to redeploy the running instances and reschedule them on nodes that can support the new
resource requirements. Depending on how this is configured, Kubernetes can redeploy each instance
in a way that prevents downtime while the new instances are being deployed.

Active community

The Kubernetes community is an incredibly active open source community. As a result, Kubernetes
frequently receives patches and new features. The community has also made many contributions to
documentation, both to the official Kubernetes documentation and to professional or hobbyist blog
websites. In addition to documentation, the community is highly involved in planning and attending
meetups and conferences around the world, which helps increase education about the platform and
innovation surrounding it.

Understanding Kubernetes and Helm8

Another benefit of Kubernetes’ large community is the number of different tools built to augment the
abilities that are provided. Helm is one such tool. As we’ll see later in this chapter and throughout this
book, Helm—a tool built by members of the Kubernetes community—vastly improves a developer’s
experience by simplifying application deployments and life cycle management.

With an understanding of the benefits Kubernetes brings to managing containerized workloads, let’s
now discuss how an application can be deployed in Kubernetes.

Deploying a Kubernetes application
Deploying an application on Kubernetes is fundamentally similar to deploying an application
outside of Kubernetes. All applications, whether containerized or not, must consider the following
configuration details:

• Networking

• Persistent storage and file mounts

• Resource allocation

• Availability and redundancy

• Runtime configuration

• Security

Configuring these details on Kubernetes is done by interacting with the Kubernetes application
programming interface (API). The Kubernetes API serves as a set of endpoints that can be interacted
with to view, modify, or delete different Kubernetes resources, many of which are used to configure
different details of an application.

There are many different Kubernetes API resources, but the following table shows some of the most
common ones:

Resource Name Definition
Pod The smallest deployable unit in Kubernetes. Encapsulates

one or more containers.
Deployment Used to deploy and manage a set of Pods. Maintains the

desired amount of Pod replicas (1 by default).
StatefulSet Similar to a Deployment resource, except a StatefulSet

maintains a sticky identity for each Pod replica and can also
provision PersistentVolumeClaims resources (explained
further down in this table) unique to each Pod.

Service Used to load-balance between Pod replicas.
Ingress Provides external access to services within the cluster.

Approaches to resource management 9

ConfigMap Stores application configuration to decouple configuration
from code.

Secret Used to store sensitive data such as credentials and keys.
Data stored in Secrets resources are only obfuscated using
Base64 encoding, so administrators must ensure that proper
access controls are in place.

PersistentVolumeClaim A request for storage by a user. Used to provide persistence
for running Pods.

Role Represents a set of permissions to be allowed against the
Kubernetes API.

RoleBinding Grants the permissions defined in a role to a user or set
of users.

Table 1.1 – Common Kubernetes resources

Creating resources is central to deploying and managing an application on Kubernetes, but what does
a user need to do to create them? We will explore this question further in the next section.

Approaches to resource management
In order to deploy an application on Kubernetes, we need to interact with the Kubernetes API to create
resources. kubectl is the tool we use to talk to the Kubernetes API. kubectl is a command-line
interface (CLI) tool used to abstract the complexity of the Kubernetes API from end users, allowing
them to more efficiently work on the platform.

Let’s discuss how kubectl can be used to manage Kubernetes resources.

Imperative and declarative configurations

The kubectl tool provides a series of subcommands to create and modify resources in an imperative
fashion. Here is a small list of these commands:

• create

• describe

• edit

• delete

The kubectl commands follow a common format, as shown here:

kubectl <verb> <noun> <arguments>

Understanding Kubernetes and Helm10

The verb refers to one of the kubectl subcommands, and the noun refers to a particular Kubernetes
resource. For example, the following command can be run to create a deployment:

kubectl create deployment my-deployment --image=busybox

This would instruct kubectl to talk to the Deployment API endpoint and create a new deployment
called my-deployment, using the busybox image from Docker Hub.

You could use kubectl to get more information on the deployment that was created by using the
describe subcommand, as follows:

kubectl describe deployment my-deployment

This command would retrieve information about the deployment and format the result in a readable
format that allows developers to inspect the live my-deployment deployment on Kubernetes.

If a change to the deployment was desired, a developer could use the edit subcommand to modify
it in place, like this:

kubectl edit deployment my-deployment

This command would open a text editor, allowing you to modify the deployment.

When it comes to deleting a resource, the user could run the delete subcommand, as illustrated here:

kubectl delete deployment my-deployment

This would call the appropriate API endpoint to delete the my-deployment deployment.

Kubernetes resources, once created, exist in the cluster as JavaScript Object Notation (JSON) resource
files, which can be exported as YAML Ain’t Markup Language (YAML) files for greater human readability.
An example resource in YAML format can be seen here:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: busybox

spec:

 replicas: 1

 selector:

 matchLabels:

 app: busybox

 template:

 metadata:

Approaches to resource management 11

 labels:

 app: busybox

 spec:

 containers:

 - name: main

 image: busybox

 args:

 - sleep

 - infinity

The preceding YAML format presents a very basic use case. It deploys the busybox image from
Docker Hub and runs the sleep command indefinitely to keep the Pod running.

While it may be easier to create resources imperatively using the kubectl subcommands we have
just described, Kubernetes allows you to directly manage the YAML resources in a declarative fashion
to gain more control over resource creation. The kubectl subcommands do not always let you
configure all the possible resource options, but creating YAML files directly allows you to more flexibly
create resources and fill in the gaps that the kubectl subcommands may contain.

When creating resources declaratively, users first write out the resource they want to create in YAML
format. Next, they use the kubectl tool to apply the resource against the Kubernetes API. While in
imperative configuration developers use kubectl subcommands to manage resources, declarative
configuration relies primarily on only one subcommand—apply.

Declarative configuration often takes the following form:

kubectl apply -f my-deployment.yaml

This command gives Kubernetes a YAML resource that contains a resource specification, although
the JSON format can be used as well. Kubernetes infers the action to perform on resources (create or
modify) based on whether or not they exist.

An application may be configured declaratively by following these steps:

1. First, the user can create a file called deployment.yaml and provide a YAML-formatted
specification for the deployment. We will use the same example as before, as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: busybox

spec:

 replicas: 1

Understanding Kubernetes and Helm12

 selector:

 matchLabels:

 app: busybox

 template:

 metadata:

 labels:

 app: busybox

 spec:

 containers:

 - name: main

 image: busybox

 args:

 - sleep

 - infinity

2. A deployment can then be created with the following command:

kubectl apply –f deployment.yaml

Upon running this command, Kubernetes will attempt to create a deployment in the way
you specified.

3. If you wanted to make a change to the deployment by changing the number of replicas to 2,
you would first modify the deployment.yaml file, as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: busybox

spec:

 replicas: 2

 selector:

 matchLabels:

 app: busybox

 template:

 metadata:

 labels:

 app: busybox

 spec:

 containers:

Resource configuration challenges 13

 - name: main

 image: busybox

 args:

 - sleep

 - infinity

4. You would then apply the change with kubectl apply, like this:

kubectl apply –f deployment.yaml

After running that command, Kubernetes would apply the provided deployment declaration
over the previously applied deployment. At this point, the application would scale up from a
replica value of 1 to 2.

5. When it comes to deleting an application, the Kubernetes documentation actually recommends
doing so in an imperative manner; that is, using the delete subcommand instead of apply,
as illustrated here:

kubectl delete –f deployment.yaml

As you can see, the delete subcommand uses the –f flag to delete the resource from the
given file.

With an understanding of how Kubernetes resources are created, let’s now discuss some of the challenges
involved in resource configuration.

Resource configuration challenges
In the previous section, we covered how Kubernetes has two different configuration methods—imperative
and declarative. One question to consider is this: What challenges do users need to be aware of when
creating Kubernetes resources with imperative and declarative methodologies?

Let’s discuss some of the most common challenges.

The many types of Kubernetes resources

First of all, as described in the Deploying a Kubernetes application section, there are many different
types of resources in Kubernetes. In order to be effective on Kubernetes, developers need to be able
to determine which resources are required to deploy their applications, and they need to understand
them at a deep enough level to configure them appropriately. This requires a lot of knowledge of and
training on the platform. While understanding and creating resources may already sound like a large
hurdle, this is actually just the beginning of many different operational challenges.

Understanding Kubernetes and Helm14

Keeping live and local states in sync

A method of configuring Kubernetes resources that we would encourage is to maintain their configuration
in source control for teams to edit and share, which also allows the source control repository to become
the source of truth. The configuration defined in source control (referred to as the local state) is then
created by applying them to the Kubernetes environment, and the resources become live or enter what
can be called a live state. This sounds simple enough, but what happens when developers need to make
changes to their resources? The proper answer would be to modify the files in source control and apply
the changes to synchronize the local state to the live state. However, this isn’t what always ends up
happening. It is often simpler, in the short term, to modify the live resource in place with kubectl
edit or kubectl patch and completely skip over modifying the local files. This results in state
inconsistency between local and live states and is an act that makes scaling on Kubernetes difficult.

Application life cycles are hard to manage

Life cycle management is a loaded term, but in this context, we’ll refer to it as the concept of installing,
upgrading, and rolling back applications. In the Kubernetes world, an installation would include API
resources for deploying and configuring an application. The initial installation would create what we
refer to here as version 1 of an application.

An upgrade, then, can be thought of as a modification to one or many of those Kubernetes resources.
Each batch of edits can be thought of as a single upgrade. A developer could modify a single service
resource, which would bump the version number to version 2. The developer could then modify a
deployment, a configmap, and a service at the same time, bumping the version count to version 3.

As newer versions of an application continue to be rolled out onto Kubernetes, it becomes more difficult
to keep track of changes that have occurred across relevant API resources. Kubernetes, in most cases,
does not have an inherent way of keeping a history of changes. While this makes upgrades harder to
keep track of, it also makes restoring a prior version of an application much more difficult. Say, for
example, a developer previously made an incorrect edit on a particular resource. How would a team
know where to roll back to? The n-1 case is particularly easy to work out, as that is the most recent
version. What happens, however, if the latest stable release was five versions ago? Teams often end
up scrambling to resolve issues because they cannot quickly identify the latest stable configuration
that worked previously.

Resource files are static

This is a challenge that primarily affects the declarative configuration style of applying YAML resources.
Part of the difficulty in following a declarative approach is that Kubernetes resource files are not
natively designed to be parameterized. Resource files are largely designed to be written out in full
before being applied, and the contents remain the source of truth (SOT) until the file is modified.
When dealing with Kubernetes, this can be a frustrating reality. Some API resources can be lengthy,
containing many different customizable fields, and it can be quite cumbersome to write and configure
YAML resources in full.

Helm to the rescue! 15

Static files lend themselves to becoming boilerplate. Boilerplate represents text or code that remains
largely consistent in different but similar contexts. This becomes an issue if developers manage multiple
different applications, where they could potentially manage multiple different deployment resources,
multiple different services, and so on. In comparing the different applications’ resource files, you may
find large numbers of similar YAML configurations between them.

The following screenshot depicts an example of two resources with significant boilerplate configuration
between them. The blue text denotes lines that are boilerplate, while the red text denotes lines that
are unique:

Figure 1.2 – An example of two resources with boilerplate

Notice, in this example, that both files are almost exactly the same. When managing files that are
as similar as this, boilerplate becomes a major headache for teams managing their applications in a
declarative fashion.

Helm to the rescue!
Over time, the Kubernetes community discovered that creating and maintaining Kubernetes resources
to deploy applications is difficult. This prompted the development of a simple yet powerful tool that
would allow teams to overcome the challenges posed by deploying applications on Kubernetes. The

Understanding Kubernetes and Helm16

tool that was created is called Helm. Helm is an open source tool used for packaging and deploying
applications on Kubernetes. It is often referred to as the Kubernetes package manager because of its
similarities to any other package manager you would find on your favorite operating system (OS).
Helm is widely used throughout the Kubernetes community and is a CNCF graduated project.

Given Helm’s similarities to traditional package managers, let’s begin exploring Helm by first reviewing
how a package manager works.

Understanding package managers

Package managers are used to simplify the process of installing, upgrading, reverting, and removing a
system’s applications. These applications are defined as packages that contain metadata around target
software and its dependencies.

The idea behind package managers is simple. First, the user passes the name of a software package as
an argument. The package manager then performs a lookup against a repository to see whether that
package exists. If it is found, the package manager installs the application defined by the package and its
dependencies to specified locations on the system.

Package managers make managing software very easy. As an example, let’s imagine you wanted to
install htop, a Linux system monitor, to a Fedora machine. Installing this would be as simple as
typing a single command, as follows:

dnf install htop --assumeyes

This instructs dnf, the Fedora package manager, to find htop in the Fedora package repository
and install it. dnf also takes care of installing the htop package’s dependencies, so you don’t have
to worry about installing its requirements beforehand. After dnf finds the htop package from the
upstream repository, it asks you whether you’re sure you want to proceed. The --assumeyes flag
automatically answers yes to this question and any other prompts that dnf may potentially ask.

Over time, newer versions of htop may appear in the upstream repository. dnf and other package
managers allow users to efficiently upgrade to new versions of the software. The subcommand that
allows users to upgrade using dnf is upgrade, as illustrated here:

dnf upgrade htop --assumeyes

This instructs dnf to upgrade htop to its latest version. It also upgrades its dependencies to the
versions specified in the package’s metadata.

While moving forward is often better, package managers also allow users to move backward and revert
an application to a prior version if necessary. dnf does this with the downgrade subcommand, as
illustrated here:

dnf downgrade htop --assumeyes

Helm to the rescue! 17

This is a powerful process because the package manager allows users to quickly roll back if a critical
bug or vulnerability is reported.

If you want to remove an application completely, a package manager can take care of that as well. dnf
provides the remove subcommand for this purpose, as illustrated here:

dnf remove htop --assumeyes

In this section, we reviewed how the dnf package manager on Fedora can be used to manage a
software package. Helm, as the Kubernetes package manager, is similar to dnf, both in its purpose
and functionality. While dnf is used to manage applications on Fedora, Helm is used to manage
applications on Kubernetes. We will explore this in greater detail next.

The Kubernetes package manager

Given that Helm was designed to provide an experience similar to that of package managers, experienced
users of dnf or similar tools will immediately understand Helm’s basic concepts. Things become more
complicated, however, when talking about the specific implementation details. dnf operates on RPM
Package Manager (RPM) packages that provide executables, dependency information, and metadata.
Helm, on the other hand, works with charts. A Helm chart can be thought of as a Kubernetes package.
Charts contain the declarative Kubernetes resource files required to deploy an application. Similar to an
RPM package, it can also declare one or more dependencies that the application needs in order to run.

Helm relies on repositories to provide widespread access to charts. Chart developers create declarative
YAML files, package them into charts, and publish them to chart repositories. End users then use
Helm to search for existing charts to deploy onto Kubernetes, similar to how end users of dnf will
search for RPM packages to deploy to Fedora.

Let’s go through a basic example. Helm can be used to deploy Redis, an in-memory cache, to Kubernetes
by using a chart from an upstream repository. This can be performed using Helm’s install command,
as illustrated here:

helm install redis bitnami/redis --namespace=redis

This would install the redis chart from the bitnami repository to a Kubernetes namespace called
redis. This installation would be referred to as the initial revision, or the initial installation of a
Helm chart.

If a new version of the redis chart becomes available, users can upgrade to the new version using
the upgrade command, as follows:

helm upgrade redis bitnami/redis --namespace=redis

This would upgrade redis to meet the specification defined by the newer redis chart.

Understanding Kubernetes and Helm18

With OSs, users should be concerned about rollbacks if a bug or vulnerability is found. The same
concern exists with applications on Kubernetes, and Helm provides the rollback command to
handle this use case, as illustrated here:

helm rollback redis 1 --namespace=redis

This command would roll redis back to its first revision.

Finally, Helm provides the ability to remove redis altogether with the uninstall command, as
follows:

helm uninstall redis --namespace=redis

Compare dnf and Helm’s subcommands, and the functions they serve in the following table. Notice
that dnf and Helm offer similar commands that provide a similar user experience (UX):

dnf subcommands Helm subcommands Purpose
install Install Install an application and its dependencies.
upgrade Upgrade Upgrade an application to a newer version. Upgrade

dependencies as specified by the target package.
downgrade rollback Revert an application to a previous version. Revert

dependencies as specified by the target package.
remove uninstall Delete an application. Each tool has a different

philosophy around handling dependencies.

Table 1.2 – Purpose of dnf and Helm subcommands

With an understanding of how Helm functions as a package manager, let’s discuss in greater detail
the benefits that Helm brings to Kubernetes.

The benefits of Helm

Earlier in this chapter, we reviewed how Kubernetes applications are created by managing Kubernetes
resources, and we discussed some of the challenges involved. Here are a few ways Helm can overcome
these challenges.

Abstracting the complexity of Kubernetes resources

Let’s assume that a developer has been given the task of deploying a WordPress instance onto Kubernetes.
The developer would need to create the resources required to configure its containers, network, and
storage. The amount of Kubernetes knowledge required to configure such an application from scratch
is high and is a big hurdle for new—and even intermediate Kubernetes users—to clear.

Helm to the rescue! 19

With Helm, a developer tasked with deploying a WordPress instance could simply search for
WordPress charts from upstream chart repositories. These charts would have already been written by
chart developers in the community and would already contain the declarative configuration required
to deploy WordPress and a backing database. Vendor-owned chart repositories also tend to be well
maintained, so teams using charts from them would not need to worry about keeping Kubernetes
resources up to date. In this regard, developers with this kind of task would act as simple end users
that consume Helm in a similar way to any other package manager.

Maintaining an ongoing history of revisions

Helm has a concept called release history. When a Helm chart is installed for the first time, Helm adds
that initial revision to the history. The history is further modified as revisions increase via upgrades,
keeping various snapshots of how the application was configured at varying revisions.

The following diagram depicts an ongoing history of revisions. The squares in blue illustrate resources
that have been modified from their previous versions:

Figure 1.3 – An example of a revision history

The process of tracking each revision provides opportunities for rollback. Rollbacks in Helm are very
simple. Users simply point Helm to a previous revision, and Helm reverts the live state to that of the
selected revision. Helm allows users to roll back their applications as far as they desire, even back to
the very first installation.

Configuring declarative resources in a dynamic fashion

One of the biggest hassles with creating resources declaratively is that Kubernetes resources are static and
cannot be parameterized. As you may recall from earlier, this results in resources becoming boilerplate
across applications and similar configurations, making it more difficult for teams to configure their
applications as code. Helm alleviates these issues by introducing values and templates.

Values can be thought of as parameters for charts. Templates are dynamically generated files based
on a given set of values. These two constructs give chart developers the ability to write Kubernetes
resources that are generated based on values that end users provide. By doing so, applications managed
by Helm become more flexible, have less boilerplate, and are easier to maintain.

Understanding Kubernetes and Helm20

Values and templates allow users to do things such as this:

• Parameterize common fields, such as the image name in a deployment and the ports in a service.

• Generate long pieces of YAML configuration based on user input, such as volume mounts in
a deployment or the data in a ConfigMap.

• Include or exclude resources based on user input.

The ability to dynamically generate declarative resource files makes it simpler to create YAML-based
resources while still ensuring that applications are deployed in an easily reproducible fashion.

Simplifying local and live state synchronization

Package managers prevent users from having to manage all of the intricate details of an application
and its dependencies. The same idea holds true with Helm. Using Helm’s values construct, users
can provide configuration changes across an application’s life cycle by managing a small number of
parameters instead of multiple full-length YAML resources. When the local state (values/parameters)
is updated, Helm propagates the configuration change out to the relevant resources in Kubernetes.
This workflow keeps Helm in control of managing intricate Kubernetes details and encourages users
to manage the state locally instead of updating live resources directly.

Deploying resources in an intelligent order

Helm simplifies application deployments by having a pre-determined order in which Kubernetes
resources need to be created. This ordering exists to ensure that dependent resources are deployed
first. For example, Secret instances and ConfigMap instances should be created before deployments,
since a deployment would likely consume those resources as volumes. Helm performs this ordering
without any interaction from the user, so this complexity is abstracted and prevents users from needing
to understand the order in which resources should be applied.

Providing automated life cycle hooks

Similar to other package managers, Helm provides the ability to define life cycle hooks. Life cycle
hooks are actions that take place automatically at different stages of an application’s life cycle. They
can be used to do things such as the following:

• Perform a data backup on an upgrade.

• Restore data on a rollback.

• Validate a Kubernetes environment prior to installation.

Life cycle hooks are valuable because they abstract complexities around tasks that may not be
Kubernetes-specific. For example, a Kubernetes user may not be familiar with the best practices
behind backing up a database or may not know when such a task should be performed. Life cycle

Summary 21

hooks allow experts to write automation that handles various life cycle tasks and prevents users from
needing to handle them on their own.

Summary
In this chapter, we began by exploring the trend of adopting microservice-based architectures to
decompose monoliths into smaller applications. The creation of microservices that are more lightweight
and easier to manage has led to utilizing containers as a packaging and runtime format to produce
releases more frequently. By adopting containers, additional operational challenges were introduced
and solved by using Kubernetes as a container orchestration platform to manage the container life cycle.

Our discussion turned to the various ways Kubernetes applications can be configured. These resources
can be expressed using two distinct styles of application configuration: imperative and declarative.
Each of these configuration styles contributes to a set of challenges involved in deploying Kubernetes
applications, including the amount of knowledge required to understand how Kubernetes resources
work and the challenge of managing application life cycles.

To better manage each of the assets that comprise an application, Helm was introduced
as the package manager for Kubernetes. Through its rich feature set, the full life cycle
of applications from installation, upgrading, and, rollback to deletion can be managed with ease.

In the next chapter, we’ll walk through the process of installing Helm and preparing an environment
that can be used for following along with this book’s examples.

Further reading
For more information about the Kubernetes resources that make up an application, please see the
Understanding Kubernetes Objects page from the Kubernetes documentation at https://kubernetes.
io/docs/concepts/overview/working-with-objects/kubernetes-objects/.

To reinforce some of the benefits of Helm discussed in this chapter, please refer to the Using Helm
page of the Helm documentation at https://helm.sh/docs/intro/using_helm/. (This
page also dives into some basic usage around Helm, which will be discussed throughout this book
in greater detail.)

Questions
Here are some questions to test your knowledge of the chapter:

1. What is the difference between a monolithic and a microservices application?

2. What is Kubernetes? What kinds of problems was it designed to solve?

3. What are some of the kubectl commands commonly used when deploying applications to
Kubernetes?

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://helm.sh/docs/intro/using_helm/

Understanding Kubernetes and Helm22

4. What challenges are often involved in deploying applications to Kubernetes?

5. How does Helm function as a Kubernetes package manager? How does it address the challenges
posed by Kubernetes?

6. Imagine you want to roll back an application deployed on Kubernetes. Which Helm command
allows you to perform this action? How does Helm keep track of your changes to make this
rollback possible?

7. What are the four primary Helm commands?

2
Preparing a Kubernetes and

Helm Environment

Helm is a tool that provides a variety of benefits that help users deploy and manage Kubernetes
applications easier. Before users can start experiencing these benefits, however, they must satisfy
several prerequisites. First, a user must have access to a Kubernetes cluster. Next, a user should have
the command-line tools for both Kubernetes and Helm. Finally, a user should be aware of Helm’s basic
configuration options to be productive with as little friction as possible.

In this chapter, we will outline the tools and concepts that are required to begin working with Helm.
The following topics will be covered in this chapter:

• Preparing a local Kubernetes environment with minikube

• Setting up kubectl

• Setting up Helm

• Configuring Helm

Technical requirements
In this chapter, you must install the following technologies on your local workstation:

• minikube

• VirtualBox

• Helm

• kubectl

Preparing a Kubernetes and Helm Environment24

These tools can be installed with a package manager or by downloading them directly from the
source. We will provide instructions for using the Chocolatey package manager on Windows, the
Homebrew package manager on macOS, the apt-get package manager for Debian-based Linux
distributions, and the dnf package manager for RPM-based Linux distributions.

Preparing a local Kubernetes environment with minikube
Helm won’t be able to deploy applications without access to a Kubernetes cluster. For this reason, let’s
discuss one option where users can run a local cluster on their machine – minikube.

minikube is a community-driven tool that allows users to easily deploy a small, single-node Kubernetes
cluster to their local machine. A cluster created with minikube is run inside either a container or a
virtual machine (VM) so that it can easily be created and later discarded. minikube presents us with
an excellent way to experiment with Kubernetes, and it can also be used to learn Helm alongside the
examples provided throughout this book.

In the next few sections, we’ll cover how minikube can be installed and configured so that you have a
Kubernetes cluster available while learning how to use Helm. For more comprehensive instructions,
please refer to the Getting Started! page of the official minikube website at https://minikube.
sigs.k8s.io/docs/start/.

Installing minikube

minikube, like the other tools that will be installed within this chapter, has binaries compiled for
the Windows, macOS, and Linux operating systems. The easiest way to install the latest version of
minikube on Windows and macOS is via a package manager, such as Chocolatey for Windows
and Homebrew for macOS. Linux users will find it easier to install the latest minikube binary
by downloading it from minikube’s GitHub releases page, though this method can also be used on
Windows and macOS as well.

The following steps describe how to install minikube based on your machine and installation preference.
Please note that minikube version v1.22.0 was used at the time of writing and for developing the
examples that have been used throughout this book.

To install it via a package manager (on Windows and macOS), run one of the following commands
based on your operating system:

• For Windows, run the following command:

choco install minikube

• For macOS, run the following command:

brew install minikube

https://minikube.sigs.k8s.io/docs/start/
https://minikube.sigs.k8s.io/docs/start/

Preparing a local Kubernetes environment with minikube 25

The following steps show you how to install minikube using a direct download link (on Windows,
macOS, and Linux):

1. Navigate to minikube’s releases page on GitHub at https://github.com/kubernetes/
minikube/releases/.

2. Find the Assets section, which contains the minikube binaries for a given release:

Figure 2.1 – A snippet of the minikube binaries from the GitHub releases page

3. Under the Assets section, download the binary that corresponds to your target platform. Once
downloaded, you should rename the binary minikube. If you are downloading the Linux
binary, for example, you would run the following command:

mv minikube-linux-amd64 minikube

4. To execute minikube, Linux and macOS users may need to add the executable bit by running
the chmod command:

chmod u+x minikube

5. minikube should then be moved to a location that’s managed by the PATH variable so that it
can be executed from any location in your command line. The locations that the PATH variable
contains vary, depending on your operating system. For macOS and Linux users, these locations
can be determined by running the following command in the Terminal:

echo $PATH

https://github.com/kubernetes/minikube/releases/
https://github.com/kubernetes/minikube/releases/

Preparing a Kubernetes and Helm Environment26

Windows users can determine the PATH variable’s locations by running the following
command in PowerShell:

$env:PATH

6. Move the minikube binary to a PATH location using the mv command. The following example
moves minikube to a common PATH location on Linux:

mv minikube /usr/local/bin/

7. You can verify your minikube installation by running minikube version and ensuring
that the displayed version corresponds with the version that was downloaded:

$ minikube version

minikube version: v1.22.0

commit: a03fbcf166e6f74ef224d4a63be4277d017bb62e

The next step involves installing a container or virtual machine manager to run your local Kubernetes
cluster. In this book, we will choose to run Kubernetes in a VM using VirtualBox since it is flexible
and available on the Windows, macOS, and Linux operating systems. We will explain how to install
VirtualBox next.

Installing VirtualBox

Like minikube, VirtualBox can easily be installed via Chocolatey or Homebrew:

• Use the following command to install VirtualBox on Windows:

choco install virtualbox

• Use the following command to install VirtualBox on macOS:

brew install --cask virtualbox

VirtualBox can also be installed by Linux package managers, but you need to download a
package first from VirtualBox’s website (https://www.virtualbox.org/wiki/
Linux_Downloads):

https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Linux_Downloads

Preparing a local Kubernetes environment with minikube 27

Figure 2.2 – VirtualBox package download links

Once you have downloaded your distribution’s package, you can install VirtualBox via
apt-get or dnf:

• Use the following command to install VirtualBox on Debian-based Linux:

apt-get install ./virtualbox-*.deb

• Use the following command to install VirtualBox on RPM-based Linux:

dnf install ./VirtualBox-*.rpm

Alternative methods of installing VirtualBox can be found at its official download page at https://
www.virtualbox.org/wiki/Downloads.

With VirtualBox installed, minikube must be configured to leverage VirtualBox as its default hypervisor.
We will configure this in the next section.

Configuring VirtualBox as the default driver

VirtualBox can be made the default driver in minikube by specifying the driver option as virtualbox:

minikube config set driver virtualbox

Note that this command may produce the following warning:

❗ These changes will take effect upon a minikube delete and
then a minikube start

This message can be safely ignored if there are no active minikube clusters on your machine.

The change to VirtualBox can be confirmed by checking the value of the driver configuration option:

minikube config get driver

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Preparing a Kubernetes and Helm Environment28

If the configuration change was successful, the following output will be displayed:

virtualbox

In addition to configuring the default driver, you can also configure the resources that are allocated
to a minikube instance, which we will discuss in the next section.

Configuring minikube resource allocation

By default, minikube will allocate 2 CPUs and 2 GB of RAM to the VM, but we recommend increasing
the memory allocation to 4 GB if your machine has the resources to spare. This is to prevent bumping
into memory constraints as you run through the exercises.

Run the following command to increase the VM memory allocation to 4 GB:

minikube config set memory 4000

This change can be verified by running the following command:

minikube config get memory.

Let’s continue exploring minikube by discussing its basic usage.

Exploring the basic usage of minikube

Throughout this book, it will be handy to understand the key commands that are used in a typical
minikube operation. They will also be essential to understand while executing the examples provided
throughout this book. Fortunately, minikube is an easy tool to get started with.

minikube has three key subcommands:

• start

• stop

• delete

The start subcommand is used to create a single-node Kubernetes cluster. It creates a VM and bootstraps
a cluster within it. The command will terminate once the cluster is ready:

$ minikube start

😄 minikube v1.22.0 on Redhat 8.4

✨ Using the virtualbox driver based on user configuration

👍 Starting control plane node minikube in cluster minikube

🔥 Creating virtualbox VM (CPUs=2, Memory=4000MB,

Setting up kubectl 29

Disk=20000MB) ...

🐳 Preparing Kubernetes v1.21.2 on Docker 20.10.6 ...

 ▪ Generating certificates and keys ...
 ▪ Booting up control plane ...
 ▪ Configuring RBAC rules ...
🔎 Verifying Kubernetes components...

 ▪ Using image gcr.io/k8s-minikube/storage-provisioner:v5
🌟 Enabled addons: storage-provisioner, default-storageclass

🏄 Done! kubectl is now configured to use "minikube" cluster
and "default" namespace by default

The stop subcommand is used to shut down the cluster and the VM. The state of the cluster and VM
are saved to the disk, allowing users to run the start subcommand again to quickly begin resuming
their work, rather than having to build a new VM from scratch. You should try to get into the habit
of running minikube stop when you have finished working with a cluster that you would like
to return to later:

$ minikube stop

✋ Stopping node "minikube" ...

🛑 1 nodes stopped.

The delete subcommand is used to delete a cluster and the VM. This command erases the state of the
cluster and VM, freeing up the space on the disk that was previously allocated. The next time minikube
start is executed, a fresh cluster and VM will be created:

$ minikube delete

🔥 Deleting "minikube" in virtualbox ...

💀 Removed all traces of the "minikube" cluster.

There are more minikube subcommands available, but these are the subcommands that you should
be aware of.

With minikube installed and configured on a local machine, you can now install kubectl, the Kubernetes
command-line tool, and satisfy the remaining prerequisite for working with Helm.

Setting up kubectl
As we mentioned in Chapter 1, Understanding Kubernetes and Helm, Kubernetes is a system that exposes
different API endpoints. These API endpoints are used to perform various actions on a cluster, such
as creating, viewing, or deleting resources. To provide a simpler user experience, developers need a
way of interacting with Kubernetes without having to manage the underlying API layer.

Preparing a Kubernetes and Helm Environment30

While you will predominantly use the Helm command-line tool throughout this book to install and
manage applications, kubectl is an essential tool for common tasks.

Read on to learn how to install kubectl on a local workstation. Note that the kubectl version that was
used at the time of writing was v1.21.2.

Installing kubectl

kubectl can be installed using minikube, or it can be obtained via a package manager or through direct
download. First, let’s describe how to obtain kubectl using minikube.

Installing kubectl via minikube

Installing kubectl is straightforward with minikube. minikube provides a subcommand called
kubectl, which downloads the kubectl binary for you. Begin by running a kubectl command
using minikube kubectl:

minikube kubectl version

This command installs kubectl to the $HOME/.minikube/cache/linux/v1.21.2 directory.
Note that the version of kubectl that’s included in the path will depend on the version of minikube
that is being used. To access kubectl once it has been installed, use the following syntax:

minikube kubectl -- <subcommand> <flags>

Here’s an example command:

$ minikube kubectl -- version --client

Client Version: version.Info{Major:"1",
Minor:"21", GitVersion:"v1.21.2",
GitCommit:"092fbfbf53427de67cac1e9fa54aaa09a28371d7",
GitTreeState:"clean", BuildDate:"2021-06-16T12:59:11Z",
GoVersion:"go1.16.5", Compiler:"gc", Platform:"linux/amd64"}

While invoking kubectl with minikube kubectl works, the syntax is more unwieldy than that
of invoking kubectl directly. This can be overcome by copying the kubectl executable from the
local minikube cache into a location that’s managed by the PATH variable. Performing this action
is similar on each operating system, but the following is an example of how it can be achieved on a
Linux machine:

$ sudo cp ~/.minikube/cache/linux/v1.21.2/kubectl /usr/local/
bin/

Setting up kubectl 31

Once complete, kubectl can be invoked as a standalone binary, as illustrated here:

$ kubectl version –client

Client Version: version.Info{Major:"1",
Minor:"21", GitVersion:"v1.21.2",
GitCommit:"092fbfbf53427de67cac1e9fa54aaa09a28371d7",
GitTreeState:"clean", BuildDate:"2021-06-16T12:59:11Z",
GoVersion:"go1.16.5", Compiler:"gc", Platform:"linux/amd64"}

kubectl can also be installed without minikube, as we’ll see in the following sections.

Installing kubectl without minikube

The Kubernetes upstream documentation provides several different mechanisms to do so for a
variety of target operating systems, as described in https://kubernetes.io/docs/tasks/
tools/install-kubectl/.

Using a package manager

Another way that kubectl can be installed without minikube is with a native package manager. The
following list demonstrates how this can be accomplished on different operating systems:

• Use the following command to install kubectl on Windows:

choco install kubernetes-cli

• Use the following command to install kubectl on macOS:

brew install kubernetes-cli

• Use the following command to install kubectl on Debian-based Linux:

sudo apt-get update

sudo apt-get install -y apt-transport-https
ca-certificates curl

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-
keyring.gpg https://packages.cloud.google.com/apt/doc/
apt-key.gpg

echo "deb [signed-by=/usr/share/keyrings/kubernetes-
archive-keyring.gpg] https://apt.kubernetes.io/
kubernetes-xenial main" | sudo tee /etc/apt/sources.
list.d/kubernetes.list

sudo apt-get update

sudo apt-get install -y kubectl

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://packages.cloud.google.com/apt/doc/apt-key.gpg
https://packages.cloud.google.com/apt/doc/apt-key.gpg

Preparing a Kubernetes and Helm Environment32

• Use the following command to install kubectl on RPM-based Linux:

cat <<EOF > /etc/yum.repos.d/kubernetes.repo[kubernetes]
name=Kubernetesbaseurl=https://packages.cloud.google.com/
yum/repos/kubernetes-el7-x86_64enabled=1gpgcheck=1repo_
gpgcheck=1gpgkey=https://packages.cloud.google.com/yum/
doc/yum-key.gpg https://packages.cloud.google.com/yum/
doc/rpm-package-key.gpgEOF

yum install -y kubectl

We will discuss the final kubectl installation method next.

Downloading directly from a link

kubectl can also be downloaded directly from a download link. The following list explains how version
v1.21.2 can be downloaded, which is the version of kubectl that will be used throughout this book:

• Download kubectl for Windows from https://storage.googleapis.com/
kubernetes-release/release/v1.21.2/bin/windows/amd64/kubectl.exe.

• Download kubectl for macOS from https://storage.googleapis.com/kubernetes-
release/release/v1.21.2/bin/darwin/amd64/kubectl.

• Download kubectl for Linux from https://storage.googleapis.com/kubernetes-
release/release/v1.21.2/bin/linux/amd64/kubectl.

The kubectl binary can then be moved to a location that’s managed by the PATH variable. On the
macOS and Linux operating systems, be sure to grant the file executable permission:

chmod u+x kubectl

The installation can be verified by running the following command.

$ kubectl version --client

Client Version: version.Info{Major:"1",
Minor:"21", GitVersion:"v1.21.2",
GitCommit:"092fbfbf53427de67cac1e9fa54aaa09a28371d7",
GitTreeState:"clean", BuildDate:"2021-06-16T12:59:11Z",
GoVersion:"go1.16.5", Compiler:"gc", Platform:"linux/amd64"}

Now that we’ve covered how to set up kubectl, we’re ready to get into the key technology of this
book – Helm.

https://storage.googleapis.com/kubernetes-release/release/v1.21.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.21.2/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/kubernetes-release/release/v1.21.2/bin/darwin/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.21.2/bin/darwin/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.21.2/bin/linux/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/v1.21.2/bin/linux/amd64/kubectl

Setting up Helm 33

Setting up Helm
Once minikube and kubectl have been installed, the next logical tool to configure is Helm. Note that
the version of Helm that was used at the time of writing this book was v3.6.3.

Installing Helm

Packages for Helm exist for both Chocolatey and Homebrew to allow you to easily install it on
Windows or macOS. On these systems, the following commands can be run to install Helm with the
applicable package manager:

• Install Helm on Windows using the following command:

> choco install kubernetes-helm

• Install Helm on macOS using the following command:

$ brew install helm

Linux users, or users who would rather install Helm from a direct downloadable link, can download
an archive from Helm’s GitHub releases page by following these steps:

1. Find the Installation and Upgrading section on Helm’s GitHub releases page at https://
github.com/helm/helm/releases:

Figure 2.3 – The Installation and Upgrading section on the Helm GitHub releases page

2. Download the archive file associated with your operating system.

https://github.com/helm/helm/releases
https://github.com/helm/helm/releases

Preparing a Kubernetes and Helm Environment34

3. Once downloaded, the file will need to be unarchived. One way that this can be achieved is
by using the Expand-Archive cmdlet on PowerShell or by using the tar utility on Bash:

For Windows/PowerShell, use the following example code:

Expand-Archive -Path helm-v3.6.3-windows-amd64.zip
-DestinationPath $DEST

For Linux, use the following example code:

tar -zxvf helm-v3.6.3-linux-amd64.tar.gz

For Mac, use the following example code:

tar -zxvf helm-v3.6.3-linux-amd64.tar

The helm binary can be found in the unarchived folder. It should be moved to a location that’s
managed by the PATH variable.

The following example illustrates how to move the helm binary to the /usr/local/bin folder
on a Linux system:

sudo mv ~/Downloads/linux-amd64/helm /usr/local/bin

Regardless of the method that Helm was installed with, verification can be performed by running
the helm version command. If the resulting output is similar to that of the following code, then
Helm has been successfully installed:

$ helm version

version.BuildInfo{Version:"v3.6.3",
GitCommit:"d506314abfb5d21419df8c7e7e68012379db2354",
GitTreeState:"clean", GoVersion:"go1.16.5"}

With Helm installed on your machine, let’s learn about the basic Helm configuration topics.

Configuring Helm
Helm is a tool with sensible defaults that allow users to be productive without needing to perform a
large number of tasks post-installation. With that being said, there are several different options users
can change or enable to modify Helm’s behavior. We will cover these options in the following sections,
beginning with configuring upstream repositories.

Adding upstream repositories

One way that users can begin to configure their Helm installation is by adding upstream chart
repositories. In Chapter 1, Understanding Kubernetes and Helm, we described how chart repositories
contain Helm charts that are more broadly available for consumption. Helm, being the Kubernetes
package manager, can connect to various chart repositories to install Kubernetes applications.

Configuring Helm 35

Helm provides the repo subcommand to allow users to manage configured chart repositories. This
subcommand contains additional subcommands that can be used to perform actions against specified
repositories.

Here are the five repo subcommands:

• add: To add a chart repository

• list: To list chart repositories

• remove: To remove a chart repository

• update: To update information on available charts locally from chart repositories

• index: To generate an index file, given a directory containing packaged charts

Using the preceding list as a guide, adding a chart repository can be accomplished using the add
repo subcommand, as follows:

$ helm repo add $REPO_NAME $REPO_URL

Adding chart repositories is required before installing the charts contained within them. The specific
steps to install charts from repositories will be discussed in detail throughout this book.

You can confirm whether a repository has been successfully added by leveraging the list repo
subcommand:

$ helm repo list

NAME URL

bitnami https://charts.bitnami.com

Repositories that have been added to the Helm client will appear in this output. The preceding
example shows that a chart repository called bitnami was previously added, so it appears in the list
of repositories known by the Helm client. If additional repositories are added, they will also appear
in this output.

Over time, updates to charts will be published and released to these repositories. Repository metadata
is cached locally. As a result, Helm is not automatically aware of when a chart is updated. You can
instruct Helm to check for updates from each configured repository by running the update repo
subcommand. Once this command has been executed, you will be able to install the latest charts
from each repository:

$ helm repo update

Hang tight while we grab the latest from your chart
repositories...

...Successfully got an update from the "bitnami" chart

https://charts.bitnami.com

Preparing a Kubernetes and Helm Environment36

repository

Update Complete. ⎈ Happy Helming!⎈

You may also need to remove repositories that have been configured previously. This can be accomplished
by using the repo remove subcommand:

$ helm repo remove bitnami

"bitnami" has been removed from your repositories

The last remaining repo subcommand form is index. This subcommand is used by repository and
chart maintainers to publish new or updated charts. This task will be covered more extensively in
Chapter 8, Publishing to a Helm Chart Repository.

Next, we will discuss Helm plugin configurations.

Adding plugins

Plugins are add-on capabilities that can be used to provide additional features to Helm. Most users
will not need to worry about plugins and plugin management with Helm. Helm is a powerful tool on
its own and is complete with a full set of included features. With that being said, the Helm community
maintains a variety of different plugins that can be used to enhance Helm’s capabilities outside of the
core code base. Some of the more popular Helm plugins are listed within the Helm documentation
at https://helm.sh/docs/community/related/.

Helm provides a plugin subcommand for managing plugins, which contain further subcommands,
as described in the following table:

Plugin
Subcommand

Description Usage

install Installs one or more Helm plugins helm plugin install $URL

list Lists installed Helm plugins helm plugin list

uninstall Uninstalls one or more Helm plugins helm plugin uninstall
$PLUGIN

update Updates one or more Helm plugins helm plugin update $PLUGIN

Table 2.1 – Helm plugin subcommands

Plugins can provide a variety of different productivity enhancements.

The following are several examples of upstream plugins:

• Helm Diff: Performs a diff between a deployed release and proposed Helm upgrade

• Helm Secrets: Used to help conceal secrets from Helm charts

https://helm.sh/docs/community/related/

Configuring Helm 37

• Helm Monitor: Used to monitor a release and perform a rollback if certain events occur

• Helm Unittest: Used to perform unit testing on a Helm chart

We will continue discussing Helm configuration options by reviewing the different environment
variables that can be set to change various aspects of Helm’s behavior.

Environment variables

Helm relies on the existence of environment variables to configure some of the low-level options.
There are many variables you can configure, each of which can be seen in the helm help output.

A few environment variables are used for storing Helm metadata:

• HELM_CACHE_HOME or XDG_CACHE_HOME: Sets an alternative location for storing cached files

• HELM_CONFIG_HOME or XDG_CONFIG_HOME: Sets an alternative location for storing
Helm configuration

• HELM_DATA_HOME or XDG_DATA_HOME: Sets an alternative location for storing Helm data

Helm adheres to the XDG Base Directory Specification, which is designed to provide a standardized
way of defining where different files are located on an operating system’s filesystem. Based on the
XDG specification, Helm automatically creates three different default directories on each operating
system as required:

Operating
System

Cache Path Configuration Path Data Path

Windows %TEMP%\helm %APPDATA%\helm %APPDATA%\helm

macOS $HOME/Library/
Caches/helm

$ H O M E / L i b r a r y /
Preferences/helm

$HOME/Library/
helm

Linux $HOME/.cache/
helm

$HOME/.config/helm $HOME/.local/
share/helm

Table 2.2 – Default locations for Helm metadata

Helm uses the cache path to store charts that are downloaded from upstream chart repositories.
Installed charts are cached to the local machine to enable faster installation of the chart the next time
it is referenced. The cache path also includes YAML files that are used to index the available Helm
charts from each configured repository. These index files are updated when users run the helm
repo update command.

Preparing a Kubernetes and Helm Environment38

The configuration path is used to save repository information, such as the URL and credentials for
authentication, if required. When a chart is installed but is not located in the local cache yet, Helm
uses the configuration path to look up the URL of the chart repository. The chart is then downloaded
from this URL.

The data path is used to store plugins. When a plugin is installed using the helm plugin install
command, the plugin itself is stored in this location.

Besides the Helm metadata paths, other environment variables are used for configuring regular
Helm usage:

• HELM_DRIVER: Sets the backend storage driver. It is used to determine how the release
state is stored in Kubernetes. The default value is secret, which Base64-encodes the state
of a release in a Kubernetes secret. Other options include configmap, which stores state
in a plaintext Kubernetes ConfigMap, memory, which stores the state in the local process’s
memory, and sql, which stores state in a relational database.

• HELM_NAMESPACE: Sets the namespace that’s used for Helm operations. The HELM_
NAMESPACE environment variable is used to set the namespace in which Helm operations
take place. This is a convenient environment variable to use as it prevents you from needing
to pass the --namespace or -n flag on each Helm invocation.

• KUBECONFIG: Sets an alternative Kubernetes configuration file. The KUBECONFIG environment
variable is used to set the file that’s used for authentication to the Kubernetes cluster. If unset, the
default value will be ~/.kube/config. In most cases, users won’t need to modify this value.

Another component of Helm that can be configured is tab completion, as discussed next.

Tab completion

Bash, Zsh, and Fish users can enable tab completion to simplify Helm usage. Tab completion allows
Helm commands to be auto-completed when the Tab key is pressed, enabling users to perform tasks
faster and helping prevent input mistakes.

This process is similar to how most modern terminal emulators behave by default. When the Tab
key is pressed, terminals try to guess what arguments are needed next by observing the state of the
command and the environment. For example, the cd /usr/local/b input can be tab-completed
to cd /usr/local/bin in a Bash shell. Similarly, an input such as helm upgrade hello-
can be tab-completed to read helm upgrade hello-world.

Tab completion can be enabled by running one of the following commands, based on your shell
of choice:

• For Bash users, run the following command:

source <(helm completion bash)

Configuring Helm 39

• For Zsh users, run the following command:

source <(helm completion zsh)

• For Fish users, run the following command:

helm completion fish | source

Note that auto-completion will only exist in terminal windows that execute one of the preceding
commands, so other open windows will need to run this command as well to experience the
auto-completion feature.

Authentication

Helm needs to be able to authenticate with a Kubernetes cluster to deploy and manage applications.
It authenticates by referencing a kubeconfig file, which specifies different Kubernetes clusters and
how to interact with them.

If you are using minikube, you will not need to configure authentication as minikube automatically
configures a kubeconfig file each time a new cluster is created. If you are not running minikube,
you will likely need to create a kubeconfig file or have one provided, depending on the Kubernetes
distribution you are using. A kubeconfig file is comprised of three primary components:

• clusters: Hostnames or IP addresses, along with a certificate authority

• users: Authentication details

• contexts: Binding between a cluster, users, and an active namespace

A kubeconfig file, along with these three primary components, can be created by leveraging three
different kubectl commands:

• The first command is set-cluster:

kubectl config set-cluster

The set-cluster command will define a cluster entry in the kubeconfig file.
set-context is used to associate a credential with a cluster. Once an association between
a credential and a cluster has been established, you will be able to authenticate to the
specified cluster using the credential’s authentication method.

• The next command is set-credentials:

kubectl config set-credentials

The set-credentials command will define the name of a user, along with its authentication
method and details. This command can configure a username and password pair, client certificate,
bearer token, or authentication provider to allow users and administrators to specify varying
different methods of authentication.

Preparing a Kubernetes and Helm Environment40

• Then, we have the set-context command:

kubectl config set-context

The set-context command, as mentioned previously, specifies a name mapping between
a cluster, credential, (user), and an active namespace. All invocations referencing a
kubeconfig file target a specific context.

The kubectl config view command can be used to view the kubeconfig file. Notice how
the clusters, contexts, and user stanzas of kubeconfig correspond to the previously
described commands, as shown in the following example:

$ kubectl config view

apiVersion: v1

clusters:

- cluster:

 certificate-authority: /home/helm-user/.minikube/ca.crt

 extensions:

 - extension:

 last-update: Mon, 13 Dec 2021 17:26:45 EST

 provider: minikube.sigs.k8s.io

 version: v1.22.0

 name: cluster_info

 server: https://192.168.49.2:8443

 name: minikube

contexts:

- context:

 cluster: minikube

 extensions:

 - extension:

 last-update: Mon, 13 Dec 2021 17:26:45 EST

 provider: minikube.sigs.k8s.io

 version: v1.22.0

 name: context_info

 namespace: default

 user: minikube

 name: minikube

current-context: minikube

kind: Config

Configuring Helm 41

preferences: {}

users:

- name: minikube

 user:

 client-certificate: /home/helm-user/.minikube/profiles/
minikube/client.crt

 client-key: /home/helm-user/.minikube/profiles/minikube/
client.key

Starting the minikube instance will automatically populate the contents of the kubeconfig file.
Once this file is present, kubectl and Helm will be able to interact with a Kubernetes cluster.

In the next section, we will discuss how authorization is handled against a Kubernetes cluster.

Authorization/RBAC

While authentication is a means of confirming identity, authorization defines the actions that an
authenticated user is allowed to perform. Kubernetes uses role-based access control (RBAC) to perform
authorization on Kubernetes. RBAC is a system for designing roles and privileges that can be assigned
to a given user or group of users. The actions a user is permitted to perform on Kubernetes depends on
the roles that the user has been assigned.

Kubernetes provides many different roles on the platform. Three common roles are listed here:

• cluster-admin: This allows a user to perform any action against any resource throughout
the cluster.

• edit: This allows a user to read and write to most resources within a namespace or a logical
grouping of Kubernetes resources.

• view: This prevents a user from modifying existing resources. It only allows users to read
resources within a namespace.

Since Helm authenticates to Kubernetes using the credentials defined in the kubeconfig file, Helm
is given the same level of access. If edit access is allowed, Helm can be assumed to have sufficient
permission to install applications, in most cases. With view access, Helm will not be able to install
applications, as this level of access is read-only. It may also be unable to list details related to installed
releases since secrets are used as the default storage driver.

Users that run minikube are given cluster-admin by default after instance creation. While this
level of access would not be a best practice in a production environment, it is acceptable for learning
and experimenting. If you are running Minikube, you will not have to worry about configuring
authorization to follow along with both the concepts and examples provided in this book. If you are
working with Kubernetes users that aren’t using minikube, you will need to make sure they are given

Preparing a Kubernetes and Helm Environment42

at least the edit role to be able to deploy applications with Helm. This can be accomplished by asking
an administrator to run the following command (where $USER is your Kubernetes user):

kubectl create clusterrolebinding $USER-edit --clusterrole=edit
--user=$USER

Best practices around RBAC will be discussed in Chapter 12, Helm Security Considerations, when we
discuss, in greater detail, the concepts related to security, including how to appropriately apply roles to
prevent mistakes and actions of malicious intent in the cluster.

Summary
There are a variety of different components you need to have available to start using Helm. In this chapter,
you learned how to install minikube to provide a local Kubernetes cluster that can be used throughout
this book. You also learned how to install kubectl, which is the official tool for interacting with the
Kubernetes API. Finally, you learned how to install the Helm client and explored the various ways that
Helm can be configured, including adding repositories and plugins, modifying environment variables,
enabling tab completion, and configuring authentication and authorization against a Kubernetes cluster.

Now that you have the prerequisite tooling installed, you can begin learning how to deploy your first
application with Helm. In the next chapter, you will install a Helm chart from an upstream chart
repository, as well as learn about life cycle management and application configuration. After finishing
that chapter, you will have an understanding of how Helm acts as the package manager for Kubernetes.

Further reading
Check out the following links to learn more about the installation options that are available for
minikube, kubectl, and Helm:

• Minikube: https://kubernetes.io/docs/tasks/tools/install-minikube/

• kubectl: https://kubernetes.io/docs/tasks/tools/install-kubectl/

• Helm: https://helm.sh/docs/intro/install/

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://helm.sh/docs/intro/install/

Questions 43

We covered various ways of configuring Helm post-installation. Check out the following links to
learn more about these topics:

• Repository management: https://helm.sh/docs/intro/
quickstart/#initialize-a-helm-chart-repository

• Plugin management: https://helm.sh/docs/topics/plugins/

• Environment variables and the helm help output: https://helm.sh/docs/helm/
helm/

• Tab completion: https://helm.sh/docs/helm/helm_completion/

• Authentication and authorization via the kubeconfig file: https://kubernetes.io/
docs/tasks/access-application-cluster/configure-access-multiple-
clusters/

Questions
Answer the following questions to test your knowledge of this chapter:

1. How does Helm authenticate to a Kubernetes cluster?

2. What mechanism is in place to provide authorization to the Helm client? How can an administrator
manage these privileges?

3. What is the purpose of the helm repo add command?

4. What are the three file paths that are used for storing Helm metadata? What does each path
contain?

5. How does Helm manage the state? What options are available to change how the state is stored?

https://helm.sh/docs/intro/quickstart/#initialize-a-helm-chart-repository
https://helm.sh/docs/intro/quickstart/#initialize-a-helm-chart-repository
https://helm.sh/docs/topics/plugins/
https://helm.sh/docs/helm/helm/
https://helm.sh/docs/helm/helm/
https://helm.sh/docs/helm/helm_completion/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

3
Installing Your First

App with Helm

Earlier in this book, we referred to Helm as the Kubernetes package manager and compared it to
an operating system’s package manager. A package manager allows users to quickly and easily install
applications of varying complexities and manage any dependencies that an application might have.
Helm works similarly.

Users simply determine the application they want to deploy on Kubernetes and Helm does the rest of
the work. A Helm chart – a packaging of Kubernetes resources – contains the logic and components
required to install an application, allowing users to perform installations without needing to know
the specific resources required. Users can also pass in parameters, called values, to a Helm chart
to customize different aspects of the application. You will explore these features in this chapter by
leveraging Helm as a package manager to deploy an instance of WordPress onto Kubernetes.

In this chapter, we will cover the following main topics:

• Understanding the WordPress application

• Finding a WordPress chart

• Creating a Kubernetes environment

• Installing a WordPress chart

• Choosing between --set and --values

• Accessing the WordPress application

• Upgrading the WordPress release

• Rolling back the WordPress release

• Uninstalling the WordPress release

• Shutting down your environment

Installing Your First App with Helm46

Technical requirements
This chapter will use the following software technologies:

• minikube

• kubectl

• Helm

We assume that these components have already been installed on your system. For additional
information on each of these tools, including their installation and configuration, please refer to
Chapter 2, Preparing a Kubernetes and Helm Environment.

Understanding the WordPress application
WordPress is an open source Content Management System (CMS) used to create websites and
blogs. Two different variants are available – WordPress.com and WordPress.org. WordPress.com
is a Software-as-a-Service (SaaS) version of the CMS, meaning the WordPress application and
its components are hosted and managed by WordPress. In this case, users do not need to worry
about installing a WordPress instance as they can simply access instances that are already available.
WordPress.org, on the other hand, is the self-hosted option. It requires users to deploy their
WordPress instances and requires some level of expertise to maintain.

Since WordPress.com is easier to start with, it may sound like the more desirable option. This SaaS
version of WordPress, however, has many disadvantages over the self-hosted WordPress.org, such as
the following:

• It does not provide as many features as WordPress.org

• It does not give users full control over their website

• It requires users to pay for premium features

• It does not provide the ability to modify the backend code of a website

The self-hosted WordPress.org variation, on the other hand, gives users complete control over their
website and WordPress instances. It provides the full WordPress feature set, from installing plugins
to modifying backend code.

A self-hosted WordPress instance requires users to deploy a few different components. WordPress needs
a MySQL or a MariaDB database to save the website and administrative data, and the WordPress UI
is deployed as a PHP frontend. In Kubernetes, deploying these components means creating a variety
of different resources:

• Secrets for database and admin console authentication

• A ConfigMap for externalized database configuration

Finding a WordPress chart 47

• Services for networking

• A PersistentVolumeClaim for database storage

• A StatefulSet for deploying the database in a stateful fashion

• A Deployment for deploying the frontend

Creating these Kubernetes resources requires both WordPress and Kubernetes expertise. WordPress
expertise is required because the user needs to know the required physical components, as well as
how to configure them. Kubernetes expertise is required because users need to know how to deploy
WordPress dependencies as Kubernetes resources. Given the complexity and number of components
that are required, deploying WordPress on Kubernetes can be a daunting task.

The challenge presented by this task is a perfect use case for Helm. Rather than focusing on creating
and configuring each of the Kubernetes resources we have described, users can leverage Helm as a
package manager to deploy and configure WordPress on Kubernetes. To begin, we’ll explore a platform
called Artifact Hub to locate a suitable WordPress Helm chart. After that, we’ll deploy WordPress to
your Kubernetes cluster using Helm and explore basic Helm features along the way.

Finding a WordPress chart
Helm charts can be made available for consumption by publishing them to a chart repository. A chart
repository is a location where packaged charts can be stored and shared. A repository is often hosted
as an HTTP server and can take the form of various implementations, including GitHub pages, an
Amazon S3 bucket, or a simple web server, such as Apache HTTPD. Recently, repositories can also
take the form of OCI registries, allowing users to save and retrieve Helm charts from hosted services
such as Docker Hub and Quay.

To use charts from a repository, Helm needs to be configured to use the repository. This can be
accomplished by adding repositories using helm repo add. One challenge involved with adding
repositories is that there are many different chart repositories available for consumption; it may be
difficult to locate the particular repository that fits your use case. To make it easier to find chart
repositories (and other Kubernetes-related artifacts), the Kubernetes community created a platform
called Artifact Hub.

Artifact Hub is a centralized location for upstream Kubernetes artifacts, such as Helm charts, operators,
plugins, and more. In this chapter, we will use the Artifact Hub platform to search for WordPress
Helm charts. Once an appropriate chart is found, we will add the repository this chart belongs to so
that it can be installed.

To begin, interaction with Artifact Hub can be accomplished either from the command line or from
a web browser. When using the command line to search for Helm charts, the results that are returned
provide a URL to Artifact Hub, which can be used to find additional information on the chart and
instructions on how to add its chart repository.

Installing Your First App with Helm48

Let’s follow this workflow to add a chart repository containing a WordPress chart.

Searching for WordPress charts from the command line

In general, Helm contains two different search commands to assist us in finding Helm charts:

• To search for charts in Artifact Hub, use the following command:

$ helm search hub

Note that in prior versions of Helm, helm search hub referenced a centrally managed
public repository of Helm charts maintained by the Helm community called Helm Hub instead
of Artifact Hub. Backward compatibility has been retained through the use of the --endpoint
parameter, which enables users to specify the location of any monocular-based instance, the
web search and discovery web application backing Helm Hub.

• To search repositories for a keyword present in a chart, use the following command:

$ helm search repo

If repositories have not been added previously, users should run the helm search hub
command to locate Helm charts available across all public chart repositories. Once a repository
has been added, users can run helm search repo to search across these repositories.

Let’s search Artifact Hub for any existing WordPress charts. Each chart in Artifact Hub has a set of
keywords that can be searched against. Execute the following command to locate charts containing
the wordpress keyword:

$ helm search hub wordpress

Upon running this command, an output similar to the following should be displayed:

Figure 3.1 – The output from running helm search hub wordpress

Each line of the output returned by this command is a chart from Artifact Hub. The output displays
the URL to each chart’s Artifact Hub page. Also displayed is the chart version, which represents the
latest version of the Helm chart, and the app version, which represents the version of the application
that the chart deploys by default. The helm search hub command also prints a brief description
of each chart.

Finding a WordPress chart 49

As you may have noticed, some of the values returned are truncated. This is because the default
output of helm search hub is table, causing the results to be returned in tabular format. By
default, columns wider than 50 characters are truncated. This truncation can be avoided by using the
--max-col-width=0 flag.

Try running the following command by including the --max-col-width flag to view the untruncated
results in tabular format:

$ helm search hub wordpress --max-col-width=0

Alternatively, users can pass the --output flag and specify either yaml or json, which will print
the search results in full.

Try running the previous command again with the --output yaml flag:

$ helm search hub wordpress --output yaml

The result will be in YAML format, similar to the output shown here:

Figure 3.2 – The output for the helm search hub wordpress --output yaml command

For this example, we will choose to install the second chart that was returned in the preceding sample
output. To learn more about this chart and how it is installed, visit https://artifacthub.io/
packages/helm/bitnami/wordpress. We’ll explore this link in the next section.

Viewing the WordPress chart in a browser

Using helm search hub is the fastest way to search for charts on Artifact Hub. However, it does
not provide all of the details needed for installation. Namely, users need to know a chart’s repository
URL to add its repository and install the chart. A chart’s Artifact Hub page can provide this URL,
along with other installation details.

Once you have entered the WordPress chart’s URL into a browser window, a page similar to the
following will be displayed:

https://artifacthub.io/packages/helm/bitnami/wordpress
https://artifacthub.io/packages/helm/bitnami/wordpress

Installing Your First App with Helm50

Figure 3.3 – A WordPress Helm chart from Artifact Hub

The WordPress chart’s page from Artifact Hub provides many details, including the maintainer of the
chart (Bitnami, which is a company that provides software packages that can be deployed to different
environments) and a brief introduction to the chart (stating that this chart will deploy a WordPress
instance to Kubernetes, along with a Bitnami MariaDB chart as a dependency). The web page also
provides installation details, including the chart’s supported values, which are used to configure the
installation, along with Bitnami’s chart repository URL. These installation details give users the ability
to add this repository and install the WordPress chart.

Under the TL;DR heading, you should see a helm repo add command. This is the command
that you need to run to add the Bitnami chart repository, which is the repository that contains the
WordPress chart we are interested in installing.

Bitnami repository chart retention policy

Recent changes within the Bitnami Helm community have resulted in charts being removed from
the Bitnami repository 6 months after their publication date. Aligning to the most recent versions
of software packages is a recommended practice so that the most recent set of features and security
remediations are included. However, since the remainder of the exercises specify specific chart versions
to support the stability of the tested integrations, an alternate repository must be utilized.

Fortunately, another repository index has been provided that includes all of the Bitnami charts without
the retention policy of the default index, which will be described in the next section. You will learn
more about repository indexes by creating and managing your own repository in Chapter 7, Helm
Lifecycle Hooks.

Finding a WordPress chart 51

 Adding the full Bitnami repository

With an understanding of the considerations as they relate to charts within the Bitnami repository,
let’s add the repository that allows us to specify specific chart versions without concerns that they
may be removed in the future. The only difference in the helm repo add command is the URL
of the repository.

Let’s add the repository now and verify that we can interact with its contents:

1. Add the full Bitnami chart repository:

$ helm repo add bitnami https://raw.githubusercontent.
com/bitnami/charts/archive-full-index/bitnami

2. Verify that the chart has been added by running helm repo list:

$ helm repo list

NAME URL

bitnami https://raw.githubusercontent.com/bitnami/
charts/archive-full-index/bitnami

We can do a little more now that we have added the repository.

3. Run the following command to view charts from locally configured repositories that contain
the bitnami keyword:

$ helm search repo bitnami --output yaml

A shortened list of the results returned is shown in the following output:

Figure 3.4 – The output for the helm search repo bitnami --output yaml command

Installing Your First App with Helm52

Similar to the helm search hub command, the helm search repo command takes a
keyword as an argument. Using bitnami as a keyword will return all the charts in the bitnami
repository, as well as charts outside of that repository that may also contain the bitnami keyword.

To ensure that you now have access to the WordPress chart, run the following helm search repo
command with the wordpress argument:

$ helm search repo wordpress

The output will display the WordPress chart that you found on Artifact Hub and observed in your
browser:

Figure 3.5 – The output for the helm search repo wordpress command

The value in the NAME field before the slash (/) indicates the name of the repository containing the
Helm chart that was returned. The latest version of the WordPress chart from the bitnami repository,
at the time of writing, is version 12.1.6. This is the version that will be used for the installation.
Previous versions can be queried by passing the --versions flag to the search command:

helm search repo wordpress --versions

You should then see a new line for each version of the available WordPress charts:

Figure 3.6 – The version lists for WordPress charts in the bitnami repository

Now that a WordPress chart has been identified and the chart’s repository has been added, we will
explore how to use the command line to find out more about the chart so that you can install it.

Showing the WordPress chart information from the command line

You can find a lot of important details about a Helm chart on its Artifact Hub page. Once a chart’s
repository is added locally, this information (and more) can also be viewed from the command line
with the following four helm show subcommands:

• Display the chart’s metadata (or chart definition):

helm show chart

Finding a WordPress chart 53

• Display the chart’s README file:

helm show readme

• Display the chart’s values:

helm show values

• Display the chart’s definition, README files, and values:

helm show all

Let’s use these commands with the Bitnami WordPress chart. In each of these commands, the chart
should be referenced as bitnami/wordpress. Note that we will be passing the --version flag
to retrieve information about version 12.1.6 of this chart. If this flag is omitted, information from the
latest version of the chart will be returned.

Run the helm show chart command to retrieve the metadata for the chart:

$ helm show chart bitnami/wordpress --version 12.1.6

The result of this command will be the chart definition of the WordPress chart. A chart definition
describes information such as the chart’s version, its dependencies, keywords, and maintainers:

Figure 3.7 – The wordpress chart definition

Installing Your First App with Helm54

Run the helm show readme command to view the chart’s README file from the command line:

$ helm show readme bitnami/wordpress --version 12.1.6

The results of this command may look familiar since a chart’s README file is also displayed on
its Artifact Hub page. Using this option from the command line provides a quick way to view the
README file without having to open a browser:

Figure 3.8 – The wordpress chart’s README file shown in the command line

We can use helm show values to inspect a chart’s values. Values serve as parameters that users
can provide to customize a chart installation. We will run this command later in this chapter in the
Creating a values file for configuration section when we install the WordPress chart.

Finally, helm show all aggregates all of the information from the previous three commands
together. Use this command if you want to inspect all of a chart’s details at once.

Now that we have found and inspected a WordPress chart, let’s set up a Kubernetes environment
where we can later install this chart.

Creating a Kubernetes environment
To create a Kubernetes environment in this chapter, we will use minikube. We learned how to install
minikube in Chapter 2, Preparing a Kubernetes and Helm Environment.

Installing a WordPress chart 55

Follow these steps to set up Kubernetes:

1. Start your Kubernetes cluster by running the following command:

$ minikube start

2. After a short amount of time, you should see a line in the output that resembles the following:

Done! kubectl is now configured to use "minikube" cluster
and "default" namespace by default

3. Once the minikube cluster is up and running, create a dedicated namespace for this chapter’s
exercise. Run the following command to create a namespace called chapter3:

$ kubectl create namespace chapter3

Now that the cluster setup is complete, let’s begin the process of installing the WordPress chart to
your Kubernetes cluster.

Installing a WordPress chart
Installing a Helm chart is a simple process that should begin with inspecting a chart’s values. In the
next section, we will inspect the values that are available in the WordPress chart and describe how to
create a file that allows for customizing the installation. Finally, we will install the chart and access
the WordPress application.

Creating a values file for configuration

You can override the values defined in charts by providing a YAML-formatted values file. To create
a values file, you need to inspect the supported values that the chart provides. This can be done by
running the helm show values command, as explained earlier.

Run the following command to inspect the WordPress chart’s values:

$ helm show values bitnami/wordpress --version 12.1.6

The result of this command should be a long list of possible values that you can set, many of which
already have default values set:

Installing Your First App with Helm56

Figure 3.9 – A list of values generated by running helm show values

The preceding output shows a portion of the WordPress chart’s values. Many of these properties
already have defaults set, meaning these values will represent how the chart is configured if they are
not overridden. For example, if the values under the image map are not overridden, the WordPress
chart will use the bitnami/wordpress container image from the docker.io registry against
the 5.8.0-debian-10-r24 tag.

Lines in the chart’s values that begin with a hash sign (#) are comments. Comments can be used to
explain a value or a block of values, or they can be used to unset them. As shown in the preceding
example, comments were used to document each of the image-related values.

If we explore the helm show values output further, we can find values that pertain to configuring
the WordPress blog’s metadata:

Installing a WordPress chart 57

Figure 3.10 – The values returned by running the helm show values command

As you can see, these values are used to create a WordPress user and create a name for your blog. Let’s
override them by creating a values file. Create a new file on your machine called wordpress-
values.yaml. In that file, enter the following content:

wordpressUsername: helm-user

wordpressPassword: my-password

wordpressEmail: helm-user@example.com

wordpressFirstName: Helm_is

wordpressLastName: Fun

wordpressBlogName: Learn Helm!

Feel free to get more creative with these values if you’d like. Continuing down the list of values from
helm show values, there is one more important value that should be added to your values
file before starting the installation, as shown here:

Figure 3.11 – The LoadBalancer value returned after running helm show values

Installing Your First App with Helm58

To simplify the installation, we are going to update this value (referred to as service.type) to
NodePort. We could leave this set to LoadBalancer, but this would require you to use the
minikube tunnel command to reach the service. By setting this to NodePort instead, you will
be able to directly access WordPress against a local port.

Add this value to your wordpress-values.yaml file:

service:

 type: NodePort

Once this value has been added to your values file, your complete wordpress-values.yaml
file should look as follows:

wordpressUsername: helm-user

wordpressPassword: my-password

wordpressEmail: helm-user@example.com

wordpressFirstName: Helm_is

wordpressLastName: Fun

wordpressBlogName: Learn Helm!

service:

 type: NodePort

Now that the values file is complete, let’s run the installation.

Running the installation

We use helm install to install a Helm chart. The standard syntax is as follows:

helm install [NAME] [CHART] [flags]

The NAME parameter is the name you would like to give your Helm release. A release captures the
Kubernetes resources that were installed with a chart and tracks an application’s life cycle. We will
explore how releases work throughout this chapter.

The CHART parameter is the name of the Helm chart that is installed. Charts from a repository can
be installed using <repo name>/<chart name>.

The flags option in helm install allows you to further customize the installation. flags
allows users to define and override values, specify the namespace to work against, and more. The
list of flags can be viewed by running helm install --help. We can pass --help to other
commands to view their usage and supported options.

Installing a WordPress chart 59

Now that we have a proper understanding of the usage of helm install, let’s run the following
command:

$ helm install wordpress bitnami/wordpress --values=wordpress-
values.yaml --namespace chapter3 --version 12.1.6

This command installs a new release called wordpress using the bitnami/wordpress Helm
chart. It uses the values defined in the wordpress-values.yaml file to customize the installation,
and the chart is installed in the chapter3 namespace. Version 12.1.6 of the chart is deployed,
as defined by the --version flag. Helm will install the latest cached version of the Helm chart
without this flag.

If the chart’s installation is successful, you should see the following output:

Figure 3.12 – The output of a successful WordPress chart installation

This output displays information about the installation, including the name of the release, the time it
was deployed, the namespace it was installed to, the status of the deployment (which is deployed),
and the revision number (which is set to 1 since this is the initial installation of the release).

The output also displays a list of notes related to the installation. Notes are used to provide users with
additional information about their installation. In the case of the WordPress chart, these notes provide
information about how to access the WordPress application. While these notes appear directly after

Installing Your First App with Helm60

installation, they can be retrieved at any time with the helm get notes command, as explained
in the next section.

With your first Helm installation complete, let’s inspect the release to observe the resources and
configurations that were applied.

Inspecting your release

One of the easiest ways to inspect a release and verify its installation is to list all the Helm releases in
a given namespace. For this to be achieved, Helm provides the list subcommand.

Run the following command to view the list of releases in the chapter3 namespace:

$ helm list --namespace chapter3

You should see only one release in this namespace, as shown here:

Figure 3.13 – The output from the helm list command that lists the Helm releases

The list subcommand provides the following information:

• The release name

• The release namespace

• The latest revision number of the release

• A timestamp of the latest revision

• The release status

• The chart name

• The application version

Note that the status, chart name, and application version have been truncated in the preceding output.

While the list subcommand is useful for providing high-level release information, there are additional
items that users may want to know about a particular release. Helm provides the get subcommand
to provide more information about a release.

The following commands can be used to provide a set of detailed release information:

• To return all the hooks for a named release, run the following command:

helm get hooks

Installing a WordPress chart 61

• To return the manifest for a named release, run the following command:

helm get manifest

• To return the notes for a named release, run the following command:

helm get notes

• To return the values for a named release, run the following command:

helm get values

• To return all the information about a named release, run the following command:

helm get all

The first command from the preceding list, helm get hooks, is used to display the hooks for a
given release. Hooks will be explored in more detail in Chapter 7, Helm Lifecycle Hooks, when you build
and test a Helm chart. For now, hooks can be thought of as the actions that Helm performs during
certain phases of an application’s life cycle. This WordPress installation did not create any hooks, so
let’s move on to the next command.

The helm get manifest command can be used to get a list of the Kubernetes resources that
were created as part of the installation. Run the following command:

$ helm get manifest wordpress --namespace chapter3

After you run this command, you’ll see the following Kubernetes manifests:

• Two Secrets for MariaDB and WordPress credentials

• Two ConfigMaps (the first is used to configure the WordPress application, while the second
is used for testing, which is performed by chart developers and so can be ignored).

• One PersistentVolumeClaim for persisting MariaDB data.

• Two Services for MariaDB and WordPress

• One Deployment for WordPress

• One StatefulSet for MariaDB

• One ServiceAccount for MariaDB

From this output, you can observe where your values had an effect when they configured the Kubernetes
resources. One example to note is within the WordPress service, where type has been set to NodePort:

Installing Your First App with Helm62

Figure 3.14 – Setting the Service type to NodePort

You can also observe the other values that we set for the WordPress user. These values are defined as
environment variables in the WordPress deployment, as shown in the following screenshot:

Figure 3.15 – Values set as environment variables

Installing a WordPress chart 63

The rest of the default values provided by the chart were left untouched. Those defaults have been applied
to the Kubernetes resources and can be observed through the helm get manifest command.
If these values had been changed, the Kubernetes resources would have been configured differently.

Let’s move on to the next get command. The helm get notes command is used to display the
notes from a Helm release. As you may recall, the release notes were displayed when the WordPress chart
was installed. Notes are chart-specific and, in the case of WordPress, provide important information
about accessing the application and can be displayed once again by running the following command:

$ helm get notes wordpress --namespace chapter3

The next command is helm get values, and it is useful for recalling the values that were used for
a given release. Run the following command to view the values that were provided in the wordpress
release:

$ helm get values wordpress --namespace chapter3

The result of this command should look familiar as they should match the values specified in the
wordpress-values.yaml file:

Figure 3.16 – User-supplied values in the WordPress release

While recalling the user-supplied values is useful, it may be necessary to return all of the values used
by a release, including the defaults. This can be accomplished by passing in an additional --all flag,
as shown in the following command:

$ helm get values wordpress --all --namespace chapter3

For this chart, the output will be lengthy. The first several values are shown in the following output:

Installing Your First App with Helm64

Figure 3.17 – A subset of all the values for the WordPress release

Finally, Helm provides a helm get all command, which can be used to aggregate all of the
information from the various helm get commands:

$ helm get all wordpress –n chapter3

In the preceding command, we snuck in the -n flag in place of --namespace. From here on out,
we will use the -n flag to provide the namespace that Helm should operate within.

Besides the commands provided by Helm, the kubectl CLI can also be used to inspect an installation
more closely. For example, you could return the deployments that Helm created by running the
following command:

$ kubectl get deployments -l app.kubernetes.io/name=wordpress
-n chapter3

You’ll find that the following deployment exists in the chapter3 namespace:

Figure 3.18 – The wordpress deployment in the chapter3 namespace

Choosing between --set and --values 65

In the preceding command, we filtered the deployments by using the -l app.kubernetes.
io/name=wordpress parameter. Many Helm charts add the app.kubernetes.io/name
label (or a similar label) on the resources they create. You can use this label to filter resources using
kubectl so that only resources that Helm created are returned.

Choosing between --set and --values
When we installed WordPress earlier, we used the --values flag to pass parameters to the Helm
chart. However, there are two ways to pass values:

• To pass a value explicitly from the command line, use the following command:

--set

• To specify values from a YAML file or URL, use the following command:

--values

In this book, we will treat the --values flag as the preferred method of configuring chart values.
The reason for this is that it is easier to configure multiple values when they are contained in a
YAML file. Maintaining a values file also makes it simple to save these assets in a Source Code
Management (SCM) system, such as Git, which allows installations to be easily reproducible.
However, take note that sensitive values, such as passwords, should never be stored in a source
control repository. When secrets need to be provided, the recommended approach is to use the
--set flag to prevent them from being committed to source control. We will cover the topic of
security in greater detail in Chapter 12, Helm Security Considerations.

The --set flag is used to pass values directly from the command line. This is an acceptable method for
simple values, as well as for when there are only a small number of values that need to be configured.
Complex values, such as lists and maps, can be challenging to input when using the --set flag,
so it is not preferred. There are other related flags, such as --set-file and --set-string.
The --set-file flag is used to pass along a file that has configured values in a key1=val1
and key2=val2 format, while the --set-string flag is used to set all the values provided in a
key1=val1 and key2=val2 format as strings.

Now, let’s explore the WordPress application that we just installed.

Installing Your First App with Helm66

Accessing the WordPress application
The WordPress chart’s release notes provided four commands that you can run to access your
WordPress application (you can recall the full release notes using helm get notes wordpress
-n chapter3). Run the four commands that were provided from the notes:

• For macOS or Linux, run the following:

export NODE_PORT=$(kubectl get --namespace chapter3 -o
jsonpath="{.spec.ports[0].nodePort}" services wordpress)

export NODE_IP=$(kubectl get nodes --namespace chapter3
-o jsonpath="{.items[0].status.addresses[0].address}")

echo "WordPress URL: http://$NODE_IP:$NODE_PORT/"

echo "WordPress Admin URL: http://$NODE_IP:$NODE_PORT/
admin"

• For Windows PowerShell, run the following:

$NODE_PORT = kubectl get --namespace chapter3 -o
jsonpath="{.spec.ports[0].nodePort}" services wordpress |
Out-String

$NODE_IP = kubectl get nodes --namespace chapter3 -o
jsonpath="{.items[0].status.addresses[0].address}" |
Out-String

echo "WordPress URL: http://$NODE_IP:$NODE_PORT/"

echo "WordPress Admin URL: http://$NODE_IP:$NODE_PORT/
admin"

After defining the two environment variables based on the series of kubectl queries, the resulting
echo commands will reveal the URLs to access WordPress. The first URL is to view the home page
and is where visitors will access your site. The second URL is to reach the admin console, which is
used by website administrators to configure and manage the site’s content.

Paste the first URL into a browser. You should be presented with a page that looks similar to the following:

Accessing the WordPress application 67

Figure 3.19 – The WordPress blog page

Several portions of this page may look familiar to you. First, at the top of the screen, the title of the blog
is Learn Helm!, which is the string you gave the wordpressBlogName value previously during
installation. You can also see this value at the bottom left-hand side of the page.

Another value that affected the customization of the home page is wordpressUsername. If you
click on the Hello world! link, you’ll find that the author of that post is helm-user:

Figure 3.20 – The “Hello world!” post

Installing Your First App with Helm68

If you had provided a different value for wordpressUsername, then the author here would appear
differently as well.

The second link provided by the previous set of commands is for accessing the admin console. Paste
the link from the second echo command into a browser. You should be presented with the following
login screen:

Figure 3.21 – The WordPress admin console login page

To log into the admin console, enter the wordpressUsername and wordpressPassword
values that you provided during the installation. If you used the same values we specified earlier, then
the username will be helm-user and the password will be my-password.

Once you’re authenticated, the admin console dashboard will be displayed, as shown here:

Accessing the WordPress application 69

Figure 3.22 – The WordPress admin console page

If you were a WordPress administrator, this is where you could configure your site, write posts, and
manage plugins. If you click on the top-right link that says Howdy, helm-user (not visible in the preceding
screenshot), you will be directed to the helm-user profile page. From there, you can see several of the
other values that you provided during the installation, as shown in the following screenshot:

Figure 3.23 – The WordPress profile page

Installing Your First App with Helm70

The First Name, Last Name, and Email fields refer to their corresponding wordpressFirstname,
wordpressLastname, and wordpressEmail Helm values.

Feel free to continue exploring your WordPress instance. Once you are finished, continue to the next
section to learn how to upgrade a Helm release.

Upgrading the WordPress release
Upgrading a release refers to the process of modifying the release’s values or updating the chart to a
newer version. In this section, we will upgrade the WordPress release by adding a couple more values
to the installation.

Modifying the Helm values

Oftentimes, when deploying applications to Kubernetes, you will want to run multiple replicas of the
application to provide high availability and reduce the load on a single instance. Helm charts often provide
some sort of replica-related value for configuring the number of pod replicas to deploy. A quick browse
through the output of the helm show values bitnami/wordpress --version 12.1.6
command shows that you can increase WordPress replicas by using the replicaCount value:

Figure 3.24 – replicaCount in the helm show values command

Add the following line to your wordpress-values.yaml file to increase the number of replicas
from 1 to 2:

replicaCount: 2

Let’s add another value to set the resource requests. Looking through the helm show values
output, you can see that this chart provides a resources map within its set of values:

Figure 3.25 – The values under the resources stanza

Upgrading the WordPress release 71

Nested values such as resources are YAML maps (or objects), and they help provide a logical
grouping of properties. Under the resources map is a requests map, which is used to configure
the memory and cpu values that Kubernetes will allocate to the WordPress application. Let’s modify
these values to decrease the memory request to 256Mi (256 mebibytes) and the cpu request to 100m
(100 millicores). Add these modifications to the wordpress-values.yaml file, as shown here:

resources:

 requests:

 memory: 256Mi

 cpu: 100m

After defining these two new values, your entire wordpress-values.yaml file will look as follows:

wordpressUsername: helm-user

wordpressPassword: my-password

wordpressEmail: helm-user@example.com

wordpressFirstName: Helm_is

wordpressLastName: Fun

wordpressBlogName: Learn Helm!

service:

 type: NodePort

replicaCount: 2

resources:

 requests:

 memory: 256Mi

 cpu: 100m

Once the wordpress-values.yaml file has been updated with these new values, you can run
the helm upgrade command to upgrade the release, as we will discuss in the next section.

Running the upgrade

The helm upgrade command is almost identical to the helm install command in basic
syntax, as illustrated in the following example:

helm upgrade [RELEASE] [CHART] [flags]

While helm install expects you to provide a name for a new release, helm upgrade expects
you to provide the name of an already-existing release that should be upgraded. Alternatively, you
can pass the --install flag, which instructs Helm to perform an installation instead if the release
name you provide does not exist.

Installing Your First App with Helm72

Values defined in a values file can be provided using the --values flag, identical to that of the
helm install command. Run the following command to upgrade the WordPress release with
the new set of values:

$ helm upgrade wordpress bitnami/wordpress --values wordpress-
values.yaml -n chapter3 --version 12.1.6

Once this command has been executed, you should see an output similar to that of helm install.
You should also notice that the REVISION field now says 2:

Figure 3.26 – The output for helm upgrade

You should also see that the wordpress pods have restarted if you run the following command:

$ kubectl get pods -n chapter3

In Kubernetes, new pods are created when their pod template is modified. The same behavior can be
observed in Helm. The values that were added during the upgrade introduced a configuration change
to the WordPress pod template. As a result, new WordPress pods were created with the updated
configuration. These changes can be observed using the same helm get manifest and kubectl
get deployment commands that were used earlier in this chapter.

In the next section, we’ll perform a couple more upgrades to demonstrate how values can sometimes
behave differently during an upgrade.

Upgrading the WordPress release 73

Reusing and resetting values during an upgrade

In addition to --set and --values, which are present in both helm install and helm
upgrade, the helm upgrade command includes two additional values-related flags.

Let’s look at these flags now:

• --reuse-values: When upgrading, reuse the last release’s values

• --reset-values: When upgrading, reset the values to the chart defaults

If an upgrade is performed without providing values with the --set or --values flags, then the
--reuse-values flag is applied by default. In other words, the same values that were used by the
previous release will be used again during the upgrade if no values are provided. Alternatively, if at
least one value is provided with --set or --values, then the --reset-values flag is applied
by default. Let’s run through an example:

1. Run another upgrade command without specifying any values:

$ helm upgrade wordpress bitnami/wordpress -n chapter3
--version 12.1.6

2. Run the helm get values command to inspect the values used in the upgrade:

$ helm get values wordpress -n chapter3

Notice that the values displayed are identical to the previous upgrade:

Figure 3.27 – The output of the helm get values command

Different behavior can be observed when values are provided during an upgrade. If values are
passed via the --set or --values flags, all of the chart’s values that are not provided are
reset to their defaults. Let’s see this in action.

Installing Your First App with Helm74

3. Run another upgrade by providing a smaller set of values with the --set flag:

$ helm upgrade wordpress bitnami/wordpress --set
replicaCount=1 --set wordpressUsername=helm-user --set
wordpressPassword=my-password -n chapter3 --version
12.1.6

4. After the upgrade, run the helm get values command:

$ helm get values wordpress -n chapter3

The output will declare that you have only provided three values, as opposed to the many that you
originally declared in the wordpress-values.yaml file:

Figure 3.28 – The updated user-supplied values

To prevent confusion during your upgrades and to simplify how values are managed, try to manage
all of your values in a values file. This provides a more declarative approach, and it makes it clear
which values will be applied each time you upgrade.

If you have been following along with each of the commands provided in this chapter, you should now
have four revisions of the WordPress release in your environment. This fourth revision is not quite
in the way we want the application to be configured since most of the values were set back to their
defaults by the most recent upgrade. In the next section, we will explore how the WordPress release
can be rolled back to the stable version that contained the set of desired values.

Rolling back the WordPress release
While moving forward is preferred, there are some occasions where it makes more sense to return
to a previous version of the application. The helm rollback command exists to satisfy this use
case. Let’s describe how to roll back the WordPress release to a previous state.

Inspecting the WordPress history

Every Helm release has a history of revisions. A revision is used to track the values, Kubernetes
resources, and the chart version that were used in a particular release version. A new revision is created
when a chart is installed, upgraded, or rolled back. Revision data is saved in Kubernetes Secrets by
default (other options are ConfigMaps, local memory, or a PostgreSQL database, as determined by the

Rolling back the WordPress release 75

HELM_DRIVER environment variable). This allows your Helm release to be managed and interacted
with by different users on the Kubernetes cluster, provided they have the appropriate Role-Based Access
Control (RBAC) permissions to view or modify resources in your namespace. Secrets containing
the revisions can be observed by using kubectl to get them from the chapter3 namespace:

$ kubectl get secrets -n chapter3

This command will return all of the secrets within the namespace, but you should see these four in
the output:

sh.helm.release.v1.wordpress.v1

Sh.helm.release.v1.wordpress.v2

sh.helm.release.v1.wordpress.v3

sh.helm.release.v1.wordpress.v4

Each of these Secrets corresponds with an entry of the release’s revision history, which can be
viewed by running the helm history command:

$ helm history wordpress -n chapter3

This command will display a table of each revision, similar to the following (some columns have been
omitted for readability):

REVISION STATUS DESCRIPTION
1 superseded Install complete
2 superseded Upgrade complete
3 superseded Upgrade complete
4 deployed Upgrade complete

Table 3.1 – Table caption

In this output, each revision has a number, along with the time it was updated, the status, the name of
the chart, the app version, and the description. Revisions that have a status of superseded are no
longer up to date, while the revision that says deployed is the currently deployed revision. Other
statuses include pending and pending_upgrade, which means the installation or upgrade is
currently in progress. failed refers to a particular revision that has failed to install or be upgraded and
unknown means that you encountered a bug and may want to file an issue or notify the maintainers.
It’s unlikely you will ever encounter a release with a state of unknown.

The helm get commands described previously can be used against a revision number by specifying
the --revision flag. For this rollback, let’s determine the release that had the full set of desired
values. As you may recall, the current revision, revision 4, only contains a subset of the values

Installing Your First App with Helm76

we need, but revision 3 should contain all of our desired values. This can be verified by running
the helm get values command with the --revision flag:

$ helm get values wordpress --revision 3 -n chapter3

The full list of values is presented by inspecting this revision:

Figure 3.29 – The output of checking a specific revision

It is possible to execute other helm get commands against a revision number to perform a further
inspection. If necessary, the helm get manifest command can also be executed against revision
3 to check the state of the Kubernetes resources that would be restored.

In the next section, we will execute the rollback.

Running the rollback

The helm rollback command has the following syntax:

helm rollback <RELEASE> [REVISION] [flags]

Users provide the name of the release and the desired revision number to roll a Helm release back to
a previous point in time. Execute the following command to roll back WordPress to revision 3:

$ helm rollback wordpress 3 -n chapter3

The rollback subcommand provides a simple output, printing the following message:

Rollback was a success! Happy Helming!

Rolling back the WordPress release 77

This rollback can be observed in the release history by running the helm history command:

$ helm history wordpress -n chapter3

In the release history, you will notice that a fifth revision was added with a status of deployed and
a description of Rollback to 3. When an application is rolled back, it adds a new revision to
the release history. This is not to be confused with an upgrade. The highest revision number simply
denotes the currently deployed release. Be sure to check a revision’s description to determine whether
it was created by an upgrade or a rollback.

You can get this release’s values to ensure that the rollback now uses the desired values by running
helm get values again:

$ helm get values wordpress -n chapter3

The output will show the values from the latest stable release:

Figure 3.30 – The values from the latest revision

You may notice that we did not explicitly set the chart version or the release’s values in the rollback
subcommand. This is because the rollback subcommand is not designed to accept these inputs.
It is designed to roll a chart back to a previous revision and leverage that revision’s chart version and
values. Note that the rollback subcommand should not be part of everyday Helm practices and
that it should be reserved only for emergencies, where the current state of an application is unstable
and must be reverted to a previously stable point.

If you have successfully rolled back the WordPress release, you are nearing the end of this chapter’s
exercise. The final step is to remove the WordPress application from the Kubernetes cluster by using
the uninstall subcommand, which we will describe in the next section.

Installing Your First App with Helm78

Uninstalling the WordPress release
Uninstalling a Helm release means deleting the Kubernetes resources that it manages. In addition,
the uninstall command deletes the release’s history. While this is often what we want, specifying
the --keep-history flag will instruct Helm to retain the release history.

The syntax for the uninstall command is very simple:

helm uninstall RELEASE_NAME [...] [flags]

Uninstall the WordPress release by running the helm uninstall command:

$ helm uninstall wordpress -n chapter3

Once WordPress is uninstalled, you will see the following message:

release "wordpress" uninstalled

You will also notice that the wordpress release no longer exists in the chapter3 namespace:

$ helm list -n chapter3

The output will be an empty table. You can also confirm that the release is no longer present by
attempting to use kubectl to get the WordPress deployments:

$ kubectl get deployments -l app.kubernetes.io/name=wordpress
-n chapter3

No resources found in chapter3 namespace.

As expected, there are no more WordPress deployments available. However, there is still one
PersistentVolumeClaim sticking around:

$ kubectl get pvc -n chapter3

NAME STATUS

data-wordpress-mariadb-0 Bound

PersistentVolumeClaim was not deleted because it was created in the background by the MariaDB
StatefulSet. In Kubernetes, PersistentVolumeClaim resources that are created by StatefulSets
are not automatically removed if the StatefulSet is deleted. During the helm uninstall process,
the StatefulSet was deleted but the associated PersistentVolumeClaim was not, as expected.
The PersistentVolumeClaim command can be deleted manually with the following command:

$ kubectl delete pvc data-wordpress-mariadb-0 -n chapter3

Shutting down your environment 79

Now that we’ve finished running through an example of installing, upgrading, rolling back, and
uninstalling an application using Helm, let’s shut down the Kubernetes environment.

Shutting down your environment
First, you can remove this chapter’s namespace by running the following command:

$ kubectl delete namespace chapter3

After the chapter3 namespace has been deleted, stop the minikube VM:

$ minikube stop

This will shut down the VM but will retain its state so that you can quickly begin working again in
the next exercise.

Summary
In this chapter, you learned how to install a Helm chart and manage its life cycle. We began by searching
Artifact Hub for a WordPress chart to install. After locating a chart, the repository containing the chart
was added by following the instructions from its Artifact Hub page. We then proceeded to inspect
the WordPress chart to create a set of values that overrides their defaults. These values were saved to a
values file called wordpress-values.yaml, which was then provided during the installation.

After the chart was installed, we used helm upgrade to upgrade the release by providing additional
values. We then performed a rollback with helm rollback to restore the chart to a previous state.
Finally, we removed the WordPress release at the end of the exercise with helm uninstall.

This chapter taught you how to leverage Helm as an end user, and how to use an already-written Helm
chart. In the next chapter, we will explore the concepts and structure of a Helm chart in greater detail
to begin learning how to create Helm charts of our own.

Further reading
To learn more about adding repositories locally, inspecting charts, and using the four life cycle
commands used throughout this chapter (install, upgrade, rollback, and uninstall),
go to https://helm.sh/docs/intro/using_helm/.

https://helm.sh/docs/intro/using_helm/

Installing Your First App with Helm80

Questions
1. What is Artifact Hub? How can a user interact with it to find charts and chart repositories?

2. What is the difference between the helm get and helm show commands?

3. What is the difference between the --set and --values parameters in the helm install
and helm upgrade commands? What are the benefits of using one over the other?

4. What command can be used to provide the list of revisions for a release?

5. What happens by default when you upgrade a release without providing any values? How does
this behavior differ from when you do provide values for an upgrade?

6. Imagine that you have five revisions of a release. What would the helm history command
show after you roll back the release to revision 3?

7. Imagine that you want to view all of the releases deployed to a Kubernetes namespace. What
command should you run?

8. Imagine that you run helm repo add to add a chart repository. What command can you
run to list all of the charts in that repository?

Part 2:
Helm Chart

Development

You’ve deployed your first Helm chart from a public repository. Now, it’s time to develop your
own Helm chart by learning the ins and outs of Helm templating and the Helm chart structure.

In this part, we will cover the following topics:

• Chapter 4, Scaffolding a New Helm Chart

• Chapter 5, Helm Dependency Management

• Chapter 6, Understanding Helm Templates

• Chapter 7, Helm Lifecycle Hooks

• Chapter 8, Publishing to a Helm Chart Repository

• Chapter 9, Testing Helm Charts

4
Scaffolding a New Helm Chart

In the previous chapter, you learned how to use Helm from an end user perspective, leveraging it as
a package manager to install applications to Kubernetes. Leveraging Helm in this fashion required
you to understand how to use the Helm life cycle commands (install, upgrade, rollback,
and uninstall), but it did not require you to understand how the Helm chart itself was built.
While an understanding of the Helm CLI commands is necessary to install and manage applications
installed by Helm, that level of knowledge alone will not allow you to package your own applications
into Helm charts.

In the second part of this book, starting with this chapter, we will switch gears away from being a
Helm chart end user and transition into becoming a Helm chart developer. We will accomplish this
by building a Helm chart from scratch over the next few chapters that deploys an instance of the
Guestbook application, a commonly used sample application within the Kubernetes community. By
the end of the second part, you will have an understanding of the concepts and experience required
to write robust Helm charts.

In this chapter, we will begin to explore Helm chart development by discussing the following topics:

• Understanding the Guestbook application

• Understanding the YAML format

• Using helm create to scaffold a new Helm chart

• Deploying the scaffolded Guestbook chart

• Exploring the Chart.yaml file

• Updating the Chart.yaml file

Technical requirements
This section requires the minikube and helm binaries to be installed on your local machine. The
installation and configuration of these tools are covered in Chapter 2, Preparing a Kubernetes and
Helm Environment.

Scaffolding a New Helm Chart84

Understanding the Guestbook application
Since the second part of this book will be centered around developing a Helm chart to deploy the
Guestbook application, let’s first understand what this application does and what its architecture
looks like.

The Guestbook application is a simple PHP: Hypertext Preprocessor (PHP) frontend designed to
persist messages to a Redis backend. The frontend consists of a dialog box and a Submit button, as
illustrated in the following screenshot:

Figure 4.1 – The Guestbook PHP frontend

To interact with this application, users can follow these steps:

1. Type a message in the Messages dialog box.

2. Click the Submit button.

3. When the Submit button is clicked, the message will be saved to the Redis database and displayed
at the bottom of the page, as shown in the following screenshot:

Figure 4.2 – The Guestbook frontend after a new message has been submitted

Redis is an in-memory, key-value data store that, for our Helm chart, will be clustered to provide data
replication. The cluster will consist of one leader node that the Guestbook frontend writes to. Once
data is persisted, the leader will replicate across each of the follower nodes, from which Guestbook
replicas will read, to retrieve and display the list of previously submitted messages.

The following diagram describes how the frontend interacts with Redis:

Understanding the YAML format 85

Figure 4.3 – Guestbook frontend and Redis interaction

With an understanding of how this application works, let’s focus on starting our Guestbook Helm
chart. We’ll begin with a primer on the YAML format, since this format is ubiquitous among the files
you will interact with as a Helm chart developer.

Understanding the YAML format
YAML Ain’t Markup Language (YAML) is a file format used to create human-readable configuration.
It is the file format most used to configure Kubernetes resources and is also the format used for many
of the files in Helm charts.

YAML files follow a key-value format to declare configuration. Let’s explore the YAML key-value
construct.

Defining key-value pairs

One of the most basic examples of a YAML key-value pair is shown here:

name: LearnHelm

In the preceding example, the name key is given a LearnHelm value. In YAML, keys and values are
separated by a colon (:). Characters written to the left of the colon represent the key, while characters
written to the right of the colon represent the value.

Spacing matters in YAML format. The following line does not constitute a valid key-value pair:

name:LearnHelm

Note that a space is missing between the colon and the LearnHelm string. This would result in a
parsing error. A space must exist between the colon and the value.

Scaffolding a New Helm Chart86

While the preceding example represents a simple key-value pair, YAML allows users to configure more
complex pairings with nested elements, called maps. An example is shown here:

resources:

 limits:

 cpu: 100m

 memory: 512Mi

The preceding example demonstrates a resources object containing a map of two key-value pairs:

Key Value
resources.limits.cpu 100m

resources.limits.memory 512Mi

Keys are determined by following the indentation under a YAML block. Each indentation adds a dot
(.) separator to the name of the key. The value of the key has been reached when there are no longer
any indentations remaining in the YAML block. By common practice, indentations in YAML should
use two spaces, but users can provide as many spaces as they desire as long as the spacing is consistent
throughout the document.

Important Note
Tabs are not supported by YAML, and their use will result in a parsing error.

With an understanding of YAML key-value pairs, let’s now explore some of the common types that
values can be defined as.

Value types

Values in a YAML file can be of different types. The most common type is a string, which is a text
value. Strings can be declared by wrapping a value in quotation marks, but this is not always required.
If a value contains at least one alphabetical letter or special character, the value is considered a string,
with or without quotation marks. Multiline strings can be set by using the pipe (|) symbol, as shown:

configuration: |

 server.port=8443

 logging.file.path=/var/log

Values can also be integers. A value is an integer when it is a numeric character that is not wrapped
in quotations. The following YAML declares an integer value:

replicas: 1

Understanding the YAML format 87

Compare this to the following YAML, which assigns replicas to a string value:

replicas: "1"

Boolean values are often used as well, which can be declared with either true or false:

ingress:

 enable: true

This YAML sets ingress.enable to the true Boolean value. Other acceptable Boolean values
are yes, no, on, off, y, n, Y, and N.

Values can also be set to more complex types, such as lists. Items in a list in YAML are identified by
the dash (-) symbol.

The following demonstrates a YAML list:

servicePorts:

 - 8080

 - 8443

This YAML sets servicePorts to a list of integers (such as 8080 and 8443). This syntax can also
be used to describe a list of objects:

deployment:

 env:

 - name: MY_VAR

 value: MY_VALUE

 - name: SERVICE_NAME

 value: MY_SERVICE

In this case, env is set to a list of objects containing the name and value fields. Lists are often used
in both Kubernetes and Helm configuration, and understanding them is valuable to using Helm to
its fullest potential.

While YAML is more commonly used in the worlds of Kubernetes and Helm for its ease of readability,
the JavaScript Object Notation (JSON) format can be used as well. Let’s briefly describe this format.

The JSON format

YAML is a superset of another widely used format—JSON. This is a string of key-value pairs, similar to
YAML. The key difference is that while YAML relies on spacing and indentation to properly configure
key-value pairs, JSON relies on braces and brackets.

Scaffolding a New Helm Chart88

The following example converts the previous YAML example into the JSON format:

{

 "deployment": {

 "env": [

 {

 "name": "MY_VAR",

 "value": "MY_VALUE"

 },

 {

 "name": "SERVICE_NAME",

 "value": "MY_SERVICE"

 }

]

 }

All the keys in JSON are wrapped in quotation marks and positioned before a colon:

• Curly braces ({) denote a block in a similar way to how indentations denote a block in YAML.

• Square brackets ([) denote a list in a similar way to how dashes denote a list in YAML.

There are many more constructs to the YAML and JSON formats, but this introduction provides more
than enough information to understand how they can be used in Helm charts.

In the next section, we will begin to develop our Guestbook Helm chart by first learning how to
scaffold Helm charts.

Scaffolding the Guestbook Helm chart
When developing a new Helm chart from scratch, it is often useful to start by running the helm
create command, which has the following syntax:

helm create NAME [flags]

The helm create command provides a new project folder for your Helm chart. Inside, the folder
contains a basic Helm chart scaffolding that you can use to begin developing your chart.

Let’s run the helm create command to scaffold our Guestbook Helm chart:

1. In your terminal, within a directory where you would like to store Helm charts, run the helm
create command:

$ helm create guestbook

Creating guestbook

Scaffolding the Guestbook Helm chart 89

2. Review the list of files that have been created:

$ ls –al guestbook

.

..

charts/

Chart.yaml

.helmignore

templates/

values.yaml

$ ls –l guestbook/templates/

deployment.yaml

_helpers.tpl

hpa.yaml

ingress.yaml

NOTES.txt

serviceaccount.yaml

service.yaml

tests/

As you can see, the helm create command generated a new folder for you called guestbook, which
represents the name of the Helm chart. It is not necessarily required to call this folder guestbook,
but since this is the name of the Helm chart we are creating, it is a good idea to make sure the folder
name matches.

Under the guestbook folder, there are several different files and folders that make up your Helm
chart. This may appear overwhelming at first, but we will dive deeper into each component as we
develop the Guestbook chart over the next few chapters. By the end of the second part, each of these
files will become clearer, and you will be able to jump into your next Helm chart with ease!

For now, let’s take a high-level look at each of the files that helm create generated for us. As you’ll
see in the following table, some of the files are not strictly required for a new Helm chart, but helm
create provided them for us as a best practice:

File/Directory Definition Required?
charts/ A directory that contains dependencies

or Helm charts that the parent chart
depends on.

No

Chart.yaml A file that contains metadata about the
Helm chart.

Yes

Scaffolding a New Helm Chart90

.helmignore A file that contains a list of files and
directories that should be omitted from
the Helm chart’s packaging.

No

templates/ A directory that contains Golang templates,
which are primarily used for generating
Kubernetes resources.

Yes, unless the chart
contains dependencies

templates/*.yaml A template file used to generate a
Kubernetes resource.

Yes, unless the chart
contains dependencies

templates/_*.tpl A file that contains boilerplate helper
templates.

No

templates/NOTES.txt A template file that is used to
generate usage instructions after chart
installation.

No

templates/tests/ (or
more generically,
templates/*/)

A folder used for grouping different
templates. This is strictly for aesthetics
and has no effect on how the Helm chart
operates – for example, templates/
tests is used to group templates that
are used for testing.

No

values.yaml A file that contains the chart’s default
values.

No, but every chart
should contain this file
as a best practice

Table 4.2 – Files created with the “helm create” command

In addition to the files listed in the preceding table, there are a few other files that a Helm chart can contain
that helm create did not include for us. Let’s take a high-level look at these files in the following table:

File/Directory Definition Required?
Chart.lock A file used to save, or lock in, the

previously applied dependency
versions.

No

crds/ A directory that contains Custom
Resource Definition (CRD) YAML
resources. These CRD resources
will be installed before those under
templates/.

No

README.md A file that contains installation
and usage information about the
Helm chart.

No, but every Helm chart should
contain this file as a best practice

Deploying the scaffolded Guestbook chart 91

LICENSE A file that contains the chart’s license,
which provides information about
usage and redistribution rights.

No

values.schema.json A file that contains the chart’s values
schema in the JSON format. Used
to provide input validation.

No

Table 4.3– Additional Helm chart files

Again, we will explore each of these files in greater detail when they become relevant to the topics we
will discuss later in this chapter and over the next few chapters.

For now, let’s focus on the content in the guestbook directory that helm create generated
for us. You may be surprised to know that, upon running helm create, you already have a fully
functional Helm chart contained within your guestbook folder! Let’s install the Guestbook chart
in its current state to see what gets deployed.

Deploying the scaffolded Guestbook chart
Before we install the chart, let’s set up your Kubernetes environment by following these steps:

1. Start Minikube by running the minikube start command:

$ minikube start

2. Create a new namespace called chapter4:

$ kubectl create namespace chapter4

Now, let’s proceed by installing your scaffolded chart and reviewing the deployed resources.
In Chapter 3, Installing Your First App With Helm, we installed a Helm chart from a remote
repository by providing the name bitnami/wordpress, which references the name of the
remote repository and the chart contained within this repository. Alternatively, you can also
install a chart by providing the local path to a valid Helm chart project folder. This makes it
easy to test your Helm charts and see your progress without needing to publish the chart to a
repository first.

3. Let’s install your chart by running the following command, where ./guestbook represents
the folder generated by helm create:

$ helm install guestbook ./guestbook -n chapter4

NAME: guestbook

LAST DEPLOYED: Sun Sep 19 10:39:40 2021

NAMESPACE: default

Scaffolding a New Helm Chart92

STATUS: deployed

REVISION: 1

NOTES:

1. Get the application URL by running these commands:

 export POD_NAME=$(kubectl get pods --namespace default
-l "app.kubernetes.io/name=guestbook,app.kubernetes.io/
instance=guestbook" -o jsonpath="{.items[0].metadata.
name}")

 export CONTAINER_PORT=$(kubectl get pod --namespace
default $POD_NAME -o jsonpath="{.spec.containers[0].
ports[0].containerPort}")

 echo "Visit http://127.0.0.1:8080 to use your
application"

 kubectl --namespace default port-forward $POD_NAME
8080:$CONTAINER_PORT

4. Run helm get manifest to review the resources that were deployed:

$ helm get manifest guestbook –n chapter4

As denoted in the output, your scaffolded Guestbook chart (with the default values applied)
contains one service account, one service, and one deployment. If you look carefully at the
deployment, you’ll find something interesting about the image that was deployed:

image: "nginx:1.16.0"

Sure enough, a new Helm chart that was scaffolded using helm create begins as a basic
NGINX chart. NGINX is a popular open source web server and reverse proxy. Because its
installation requires many of the same resources as many other Kubernetes applications, it
serves as a great starting point when writing new Helm charts.

Let’s continue by accessing the NGINX application to verify it was installed properly.

5. Since the Helm chart created a ClusterIP service, let’s run kubectl port-forward
so that we can access the NGINX pod. Keep in mind that, although our Guestbook chart has
installed NGINX, the deployed resources are still called guestbook, since that is the name
of our chart:

$ kubectl -n chapter4 port-forward svc/guestbook 8080:80

6. In a new terminal window (since the current one will block while the kubectl port-
forward command is active), use the curl command to reach NGINX:

$ curl localhost:8080

<!DOCTYPE html>

Deploying the scaffolded Guestbook chart 93

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

As you can see, we are able to reach NGINX successfully. Now, let’s continue by cleaning up
this Helm release.

7. Press Ctrl + c in the terminal window running the kubectl port-forward command.
Alternatively, you can close the window.

8. Uninstall the guestbook Helm release:

$ helm uninstall guestbook –n chapter4

release "guestbook" uninstalled

9. Next, you can delete the chapter4 namespace, since we won’t need it for the remainder of
the chapter:

$ kubectl delete namespace chapter4

namespace "chapter4" deleted

10. Finally, you can shut down your minikube cluster:

$ minikube stop

You may realize after this exercise that our Guestbook chart doesn’t resemble the architecture we
presented at the beginning of this chapter very much. However, by providing a scaffold that we will use
as a starting point, we have already made great progress toward creating a Helm chart for deploying
the desired architecture. We will continue making progress on our Guestbook chart in the next chapter
when we learn about dependencies. At that time, we will declare a dependency to install Redis and
the backend of our Guestbook architecture.

Scaffolding a New Helm Chart94

In the next section, we’ll take a deeper dive into one of the most important Helm chart files, Chart.
yaml. Then, at the end of the chapter, we will update this file to provide new settings that align with
our Guestbook chart.

Understanding the Chart.yaml file
The Chart.yaml file, also referred to as the chart definition, is used for storing different pieces
of metadata about a Helm chart. This file is required, and if it is not included within a chart, you’ll
receive the following error:

Error: Chart.yaml file is missing

A Chart.yaml file was created for you earlier when you ran helm create. Let’s review this file
by running the following command:

$ cat guestbook/Chart.yaml

An output like the following will be displayed:

Figure 4.4 – The Guestbook Chart.yaml file

Understanding the Chart.yaml file 95

A Chart.yaml file can contain many different fields, some of which are required, while most other
fields are optional. Let’s take a closer look at each of the fields provided in our Guestbook chart’s
Chart.yaml file.

Field Description Required?
apiVersion The chart API version Yes
name The name of the Helm chart Yes
description A brief description of the Helm chart No
type The type of Helm chart (either Application or Library) No
version The version of the Helm chart, in SemVer format. Yes
appVersion The version of the application that the Helm chart deploys.

This does not need to be in the SemVer format.
No

Table 4.4 – Fields from the generated Chart.yaml file

As you can see from Guestbook’s chart definition, the apiVersion value for our chart is set to
v2. Charts with an apiVersion value of v2 are only compatible with Helm 3. The other possible
apiVersion value is v1, but this is a legacy version that was geared towards Helm 2. Charts with
an apiVersion value of v1 handled dependencies differently and did not support library charts
(topics that we will discuss in greater detail later in this book). Helm 3 is in fact backward-compatible
with apiVersion v1, but in order to leverage Helm’s latest features and to avoid deprecations,
new Helm charts should be created using apiVersion v2.

The type of Helm chart we have scaffolded, according to the Chart.yaml file, is an application
chart. A Helm chart can be either an application chart or a library chart. An application
chart is used to deploy an application to Kubernetes, while a library chart is used to provide reusable
helper templates. We will discuss library charts in greater detail in Chapter 6, Understanding Helm
Templates . The type field in the Chart.yaml file is optional and defaults to application.

The other fields in our chart definition, name, description, version, and appVersion, are
used to provide metadata that identifies our chart. As an example, think back to Chapter 3, Installing
Your First App with Helm, when we searched Artifact Hub from the command line for WordPress charts.
We ran the helm search hub wordpress command and saw an output like the following:

Figure 4.5 – An example of name, version, appVersion, and description

Scaffolding a New Helm Chart96

These fields are acquired from their corresponding fields in Chart.yaml. Note that you can also
see this information on any chart’s Artifact Hub page.

In addition to the fields included in our scaffolded Chart.yaml file, there are many other fields
used to describe your chart, as shown in the following table:

Field Description Required?
kubeVersion A range of compatible Kubernetes versions in the SemVer format. No
keywords A list of keywords used to describe the Helm chart. Keywords are

also used to provide search terms for the helm search command.
No

home The URL to the Helm chart’s home page. No
sources A list of URLs that link to source code used by the Helm chart. No
dependencies A list of charts that your Helm chart is reliant on. No
maintainers A list of Helm chart maintainers. No
icon An icon in SVG or PNG format used to represent the Helm chart.

Displayed on the chart’s Artifact Hub page.
No

deprecated Indicates whether the Helm chart has been deprecated. No
annotations A list of annotations used to provide custom metadata. No

Table 4.5 – Additional Chart.yaml fields

The kubeVersion field is used to provide validation against the target Kubernetes cluster version.
This is useful if your Helm chart uses resources that are only compatible with certain versions of
Kubernetes. You could set kubeVersion to a string such as >= 1.18.0 < 1.20.0, and Helm
will ensure that the chart is installed only if Kubernetes is greater than or equal to version 1.18.0
and less than (exclusive) 1.20.0. You can also use the OR (||) operator, as in >= 1.15.0 <=
1.17.0 || >= 1.18.0 < 1.20.0.

The dependencies field is the most functional of these optional fields. Charts added under the
dependencies field will be installed alongside your Helm chart’s resources. We will explore
dependencies more in the next chapter.

Understanding the Chart.yaml file 97

As shown earlier with the name, version, appVersion, and description fields, each of the
other Chart.yaml properties also have an impact on how a Helm chart is displayed in Artifact Hub.
Look at the following screenshot, taken from Bitnami’s WordPress page in Artifact Hub:

Figure 4.6 – Chart.yaml metadata displayed on Artifact Hub

Let’s compare this to WordPress’s Chart.yaml file, retrieved by running helm show values
bitnami/wordpress:

Scaffolding a New Helm Chart98

Figure 4.7 – The Bitnami/WordPress Chart.yaml file

Note how home, sources, maintainers, dependencies, and keywords from Chart.
yaml are also displayed in Artifact Hub.

It is not required to provide all the Chart.yaml fields in full, but it is a good thing to do if you
are publishing your charts to Artifact Hub or another repository that can display chart metadata.
Otherwise, feel free to use your discretion and provide the fields that you find relevant and necessary.
Besides apiVersion, name, and version, we recommend providing at least appVersion and
description, since these fields provide a good high-level glance at the application your Helm
chart is packaging. If you are writing a Helm chart for public use, you should consider also adding
maintainers, home, and sources, and if you are publishing to Artifact Hub, you should also
include keywords so that the chart can be easily discovered.

Updating the Guestbook Chart.yaml file 99

With an understanding of the Chart.yaml fields, let’s finish this chapter by updating our scaffolded
chart definition to better suit our Guestbook application.

Updating the Guestbook Chart.yaml file
The scaffolded Chart.yaml file that helm create generated is catered around NGINX and not
Guestbook as we would desire. Let’s make a couple of quick changes to improve the content:

1. First, let’s update the chart description to better describe the application our chart will deploy.
Update the description field of Chart.yaml to the following (or feel free to provide
your own):

description: An application used for keeping a running
record of guests

2. Next, let’s provide a more appropriate appVersion setting that better suits the version of
Guestbook that our chart will deploy. The latest version of Guestbook is v5, so let’s use this
as our appVersion:

appVersion: v5

Our Chart.yaml file should now look like this (with the comments removed):

Figure 4.8 – The updated Chart.yaml file for Guestbook

Feel free to add any of the other Chart.yaml fields as well, but these changes, at a minimum, will
put us in a good state where the Chart.yaml metadata accurately reflects the application that we
will deploy.

We will revisit the Chart.yaml field in the next chapter when we add a chart dependency for
deploying Redis.

Summary
In this chapter, we began to peek into the world of Helm chart development by introducing the Helm
chart and chart definition structure. A Helm chart consists of a chart definition (a Chart.yaml file)
and template files used for generating Kubernetes resources. A chart definition is used to provide an
identity around the chart, including metadata such as the chart name, version, description, and the
application version that the chart deploys.

Scaffolding a New Helm Chart100

We also introduced an application called Guestbook, and we began writing a Helm chart that will be
used to deploy this application. We ran the helm create command to scaffold a new Helm chart,
and we updated the Chart.yaml file to better reflect the application that our chart will deploy. In
the next chapter, we will return to the Chart.yaml file when we add a dependency for installing
Redis, the backend service that our Guestbook frontend relies on.

Further reading
To learn more about Helm chart structure and Chart.yaml files, visit the Helm documentation
at https://helm.sh/docs/topics/charts/. For more information on the Guestbook
application, visit https://kubernetes.io/docs/tutorials/stateless-application/
guestbook/.

Questions
1. What is the file format most used in Kubernetes and Helm?

2. What is the command used to scaffold a new Helm chart?

3. Where is the Helm chart name and version defined?

4. What are the three required fields in the Chart.yaml file?

5. Helm charts can be made up of many different files. Which files are required?

6. Which folder of a Helm chart is used to contain Kubernetes resource templates?

7. Which Chart.yaml field is used to describe the application version that a Helm chart deploys?

https://helm.sh/docs/topics/charts/
https://kubernetes.io/docs/tutorials/stateless-application/guestbook/
https://kubernetes.io/docs/tutorials/stateless-application/guestbook/

5
Helm Dependency Management

As you may recall from Chapter 4, Scaffolding a New Helm Chart, the Helm chart we are developing,
guestbook, will deploy two primary components. The first is a Redis backend, which is used to
persist a list of messages. The second component is the frontend, where the user enters the messages
in a text box. In this chapter, we will focus on updating our Helm chart to deploy the first major
component – Redis.

To deploy Redis, you may assume that we will need to make vast modifications to our existing
guestbook chart. However, this is not necessarily the case. There are many Redis Helm charts
available in Artifact Hub, and as a result, we can use the dependency management features of Helm
and declare one of those charts as a dependency. Then, when the guestbook chart has been installed
in a Kubernetes cluster, the dependency is also installed. By declaring Redis as a dependency, we can
reduce the amount of effort required to create the backend for our application.

In this chapter, we will explore how Helm manages dependencies. Then, we will use what we have
learned to incorporate a Redis dependency in our Helm chart.

In this chapter, we will cover the following topics:

• Declaring chart dependencies

• The dependencies map

• Downloading chart dependencies

• Conditional dependencies

• Altering dependency names and values

• Updating the guestbook Helm chart

• Cleaning up

Helm Dependency Management102

Technical requirements
For this chapter, you will require the following tools:

• minikube

• kubectl

• helm

• git

We will use minikube to explore several examples throughout this chapter, so now is a good time to
start your minikube environment:

$ minikube start

Once minikube has started, create a new namespace for this chapter:

$ kubectl create namespace chapter5

Throughout this chapter, we will follow several examples to gain a better understanding of how chart
dependencies work in practice. Ensure that you clone the sample repository to follow along with the
examples. To clone the repository, run the following command:

$ git clone https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

With the repository cloned, let’s continue to the next section to begin learning about Helm chart
dependencies.

Declaring chart dependencies
Chart dependencies are used to install another chart’s resources that a Helm chart (referred to as the
parent chart) may depend on. We saw an example of chart dependencies in action when we installed
WordPress in Chapter 3, Installing Your First App with Helm. When we installed WordPress, we used
the wordpress chart to install both the WordPress application instance and a MariaDB backend.
You may be surprised to learn that the MariaDB database that was installed was not a native WordPress
chart resource – it was a dependency! We can confirm this fact by running the helm show chart
command to view the dependencies declared in the wordpress Chart.yaml file:

$ helm show chart bitnami/wordpress --version 12.1.4

The dependencies map 103

In the output, you’ll see the dependencies map, as follows:

dependencies:

- condition: mariadb.enabled

 name: mariadb

 repository: https://raw.githubusercontent.com/bitnami/charts/
archive-full-index/bitnami

 version: 9.x.x

- condition: memcached.enabled

 name: memcached

 repository: https://raw.githubusercontent.com/bitnami/charts/
archive-full-index/bitnami

 version: 5.x.x

- name: common

 repository: https://raw.githubusercontent.com/bitnami/
charts/archive-full-index/bitnami

 tags:

 - bitnami-common

 version: 1.x.x

Here, you can see that mariadb is the first dependency to be listed. The second dependency,
memcached, is an in-memory key/value pair database and was not installed when we deployed
WordPress in Chapter 3, Installing Your First App With Helm, as it depends on the memcached.
enabled value being set to true (this value is false by default). The third dependency, common,
is a library chart. We will explore library charts in greater detail in Chapter 6, Understanding Helm
Templates.

The WordPress dependencies listed previously are examples of what you may see in other Chart.
yaml files. Let’s look at all possible dependency-related Chart.yaml fields to understand how to
declare chart dependencies.

The dependencies map
The dependencies map within Chart.yaml supports many different fields for declaring
dependencies and altering their behavior. Let’s look at the fields that are included in this map:

Helm Dependency Management104

Field Description Required?

Name The name of the dependency chart Yes

Repository The location where the dependency chart resides Yes

Version The chart dependency version Yes

Condition A Boolean value that determines whether the dependency should
be included or not

No

Tags A list of Boolean values that determine whether the chart should
be included or not

No

import-values A mapping of source values to parent values No

Alias An alternative name to give the dependency No

Table 5.1 – The dependencies fields in Chart.yaml

The minimum required fields in the dependencies map are name, repository, and version.
We can see each of these being used in the WordPress Chart.yaml file, where the first dependency
was called mariadb, the repository was https://protect-eu.mimecast.com/s/
ax_4C5lrwTkYXJhOWg2e?domain=raw.githubusercontent.com, and the version was
9.x.x. We will learn more about these three fields in the Downloading chart dependencies section.

The condition and tags fields are used to conditionally include dependencies based on the settings
of specific values. mariadb, the first dependency of the WordPress chart, sets the condition field to
mariadb.enabled, and its third dependency (common) uses a tag called bitnami-common.
We will explore conditional dependencies with these settings in the Conditional dependencies section.

The remaining fields, alias and import-values, provide methods for manipulating the values
of a dependency chart. We will learn more about these fields in the Altering dependency names and
values section.

Now that we’ve provided a high-level overview of each of the dependency-related fields, let’s learn
how to download dependencies declared in Chart.yaml. Then, we will dive into using each field
while covering several example scenarios.

Downloading chart dependencies
Chart dependencies can be viewed and downloaded using the helm dependency subcommands
listed in the following table:

https://protect-eu.mimecast.com/s/ax_4C5lrwTkYXJhOWg2e?domain=raw.githubusercontent.com
https://protect-eu.mimecast.com/s/ax_4C5lrwTkYXJhOWg2e?domain=raw.githubusercontent.com

Downloading chart dependencies 105

Command Description
helm dependency list Lists the dependencies for the given chart.
helm dependency update Downloads the dependencies listed in Chart.yaml and

generates a Chart.lock file.
helm dependency build Downloads the dependencies listed in Chart.lock. If the

Chart.lock file is not found, then this command will mirror
the behavior of the helm dependency update command.

Let’s explore these commands by using the example Helm charts located in the chapter5/examples
folder of this book’s GitHub repository; we cloned these at the beginning of this chapter. We’ll start
by using the basic-fields chart:

1. Using the basic-fields chart located in chapter5/examples/basic-fields, list
the chart’s declared dependencies:

$ helm dependency list chapter5/examples/basic-fields

You’ll see an output similar to the following:

Figure 5.1 – An example helm dependency list output

The helm dependency list command is used to give us a quick look at a chart’s
declared dependencies, as well as their download status. From the preceding output, you can
see that the basic-fields chart declares one dependency, mariadb, and that its status
is currently missing. When the status is labeled missing, it means that you have not
downloaded that dependency yet, so the chart cannot be installed yet. Now, let’s download
the dependency.

2. Download the basic-fields chart’s dependencies by using the helm dependency
update command:

$ helm dependency update chapter5/examples/basic-fields

You’ll see the following output:

Figure 5.2 – The output of helm dependency update

Helm Dependency Management106

3. Run the helm dependency list command to confirm that the dependency has been
downloaded. For brevity, you may want to run this command as helm dep list since
helm dep is a shorthand spelling of helm dependency. We will continue to use helm
dependency throughout this book for clarity, but feel free to use the shorthand spelling to
reduce typing effort.

Back to the task at hand, let’s confirm that the download was successful by running the
following command:

$ helm dependency list chapter5/examples/basic-fields

You will see an output similar to what we saw previously, except that the status has been
updated to ok:

Figure 5.3 – The updated helm dependency list status

When helm dependency update is successful, you will see the dependency’s status
turn to ok, but you will also see a couple of new files appear in your chart’s directory.
First, you will see that the dependency chart has been downloaded under a newly created
charts/ folder, and you will also see a Chart.lock file.

Let’s look at these new files.

4. Use the ls command to view the downloaded dependency:

$ ls chapter5/examples/basic-fields/charts

mariadb-9.5.0.tgz

As you can see, dependencies are downloaded in the form of gzip archives with .tgz file
extensions. The filename contains the dependency name as well as its version.

5. Use the cat command to view the generated Chart.lock file:

$ cat chapter5/examples/basic-fields/Chart.lock

You will see the following output:

Figure 5.4 – The generated Chart.lock file

The Chart.lock file is generated upon running helm dependency update, and it
contains a list of dependencies, such as the Chart.yaml file. However, unlike Chart.

Downloading chart dependencies 107

yaml, the Chart.lock file is used to lock in the dependency versions so that the same
versions can be downloaded on other machines.

The impact that Chart.lock has is not profound in the basic-fields chart
because the MariaDB version is already statically, set at 9.5.0. However, take a look at
the wildcard-version chart located under chapter5/examples/wildcard-
version. Within this directory, the version of MariaDB is set to 9.x.x, as shown in the
following snippet:

dependencies:

 - name: mariadb

 repository: https://raw.githubusercontent.com/
bitnami/charts/archive-full-index/bitnami

 version: 9.x.x

The version, 9.x.x, is a wildcard, and it tells Helm to download the latest minor and
patch versions under major release 9 while assuming a SemVer format of major.minor.
patch. If the version was specified as 9.5.x, Helm would download the latest patch release
under major version 9 and minor version 5.

Let’s use the wildcard-version chart to understand how wildcards play a more
important role in the Chart.lock file.

6. Use the helm dependency update command to download the wildcard-version
chart’s dependencies:

$ helm dependency update chapter5/examples/wildcard-
version

7. View the generated Chart.lock file:

$ cat chapter5/examples/wildcard-version/Chart.lock

Notice that the MariaDB version in Chart.lock, 9.8.1, is different than the version in
Chart.yaml, which was 9.x.x:

Figure 5.5 – The Chart.lock file when using a wildcard dependency version

Here, you can see the impact that Chart.lock has more clearly. Since version 9.x.x was specified in
the Chart.yaml file, Helm downloads the latest 9.x.x release, and the resulting Chart.lock was
generated to lock in version 9.8.1, which was the latest at the time helm dependency update

Helm Dependency Management108

was run. However, what happens if dependencies need to be redownloaded or if the charts/ folder
needs to be regenerated? If you run helm dependency update again, you run the risk that
the latest 9.x.x release is different than 9.8.2, which may cause incompatibility issues. To address this
risk, you can use the helm dependency build command. Let’s see this command in action:

1. Delete the charts/ directory under wildcard-version:

$ rm –rf chapter5/examples/wildcard-version/charts

2. Run helm dependency build to redownload the MariaDB version specified in Chart.
lock:

$ helm dependency build chapter5/examples/wildcard-
version

3. Verify that version 9.8.1 was redownloaded to the charts/ directory:

$ ls chapter5/examples/wildcard-version/charts

mariadb-9.8.1.tgz

In this section, we walked through downloading dependencies using the helm dependency
subcommands. However, the examples we have seen so far have always resulted in dependencies being
downloaded. Sometimes, you will want to conditionally include or exclude dependencies based on
user input. We will explore this concept in the next section.

Creating conditionals
Conditional dependencies can be created by using the condition and tags fields of the
dependencies map. The condition field is used to list Boolean values that, if present, toggle
the inclusion of the dependency. Let’s explore this field first by looking at the condition-example
chart located under chapter5/examples/condition-example:

1. Observe the Chart.yaml file located at chapter5/examples/condition-example/
Chart.yaml:

$ cat chapter5/examples/condition-example/Chart.yaml

<output omitted>

dependencies:

 - name: mariadb

 repository: https://raw.githubusercontent.com/
bitnami/charts/archive-full-index/bitnami

 version: 9.5.0

 condition: mariadb.enabled

Creating conditionals 109

Notice that the last line of Chart.yaml in the preceding snippet uses the condition:
mariadb.enabled setting. This setting allows users to set a value called mariadb.
enabled to either true or false. If the value evaluates to true, the MariaDB
dependency will be included. If false, MariaDB will not be included. By default, if
mariadb.enabled does not exist, then this condition will have no effect, and MariaDB
will be included.

The best practice for setting a condition is to follow a chartname.enabled value
format, where each dependency has a unique condition, depending on the dependency’s
name. This allows for a more intuitive values schema. However, if necessary, you can specify
multiple values for a condition by using a comma-separated expression, like so:

condition: example.enabled, example2.enabled

When a condition is a comma-delimited list, the first value is used if it exists, and the rest
are ignored. Otherwise, if the first value does not exist, then subsequent values in the list are
used to fall back on.

Let’s continue with this example to see the use of the condition property in action.

2. Observe the condition-example chart’s values.yaml file, which includes the mariadb.
enabled value by default:

$ cat chapter5/examples/condition-example/values.yaml

<output omitted>

mariadb:

 enabled: true

As you can see, mariadb.enabled defaults to true, so we can expect to see MariaDB
resources created in Helm’s output. Let’s verify that this is the case.

3. Download the condition-example chart’s dependencies using the helm dependency
update command:

$ helm dependency update chapter5/examples/condition-
example

4. Install the condition-example chart in your minikube cluster:

$ helm install conditional-example chapter5/examples/
condition-example –n chapter5

5. Verify that the MariaDB-related resources were created during the installation:

$ helm get manifest conditional-example –n chapter5 |
grep mariadb

You should see a lengthy output of strings containing mariadb.

Helm Dependency Management110

As expected, MariaDB was installed because the mariadb.enabled value was set to
true. Let’s set this value to false next and verify that MariaDB has been excluded.

6. Upgrade the conditional-example release by setting mariadb.enabled to false:

$ helm upgrade conditional-example chapter5/examples/
condition-example --set mariadb.enabled=false –n chapter5

7. Verify that the MariaDB-related resources were excluded after the upgrade:

$ helm get manifest conditional-example –n chapter5 |
grep mariadb

You should not see any output.

The condition setting is the most common way to conditionally include dependencies
within your Helm charts. However, there is a second setting you can use as well that we
will showcase called tags. Whereas condition is best used for enabling individual
dependencies using the chartname.enabled format, tags is used to enable or disable
one or more dependencies by associating each dependency with descriptive labels.

Let’s use the tags-example chart located in chapter5/examples/tags-example
to understand how tags can define conditional dependencies.

8. Observe the Chart.yaml file for the tags-example chart located in chapter5/
examples/tags-example/Chart.yaml:

<output omitted>

dependencies:

 - name: mariadb

 repository: https://raw.githubusercontent.com/
bitnami/charts/archive-full-index/bitnami

 version: 9.5.0

 tags:

 - backend

 - database

 - name: memcached

 repository: https://raw.githubusercontent.com/
bitnami/charts/archive-full-index/bitnami

 version: 5.15.6

 tags:

 - backend

 - cache

Creating conditionals 111

As you can see, the tags-example chart defines two different dependencies: mariadb
and memcached. Both mariadb and memcached share the backend tag, while
mariadb also has the database tag; memcached has the cache tag separately. Let’s
explore how these tags are used by checking the chart’s values.yaml file.

9. Observe the tags-example chart’s values.yaml file. Notice the usage of the tags map
at the end of the file:

$ cat chapter5/examples/tags-example/values.yaml

<output omitted>

tags:

 backend: true

Given the values file for the tags-example chart, you can see that the backend tag
has been enabled. Since both mariadb and memcached share the same backend tag,
both dependencies are enabled by default (similarly, if the tags map was omitted, both
dependencies would also be included). To verify this ascertain, we can upgrade our previous
conditional-example release using the tags-example chart.

10. Use the helm upgrade command to upgrade conditional-example using the contents
from the tags-example chart:

$ helm upgrade conditional-example chapter5/examples/
tags-example –n chapter5

11. Verify that both mariadb and memcached were installed:

$ helm get manifest conditional-example –n chapter5 |
grep mariadb

$ helm get manifest conditional-example –n chapter5 |
grep memcached

While both commands should show large amounts of output, the presence of a match
confirms that both dependencies were installed.

By using the same tag across multiple dependencies, you can conveniently include or
exclude dependencies within your chart. Imagine, however, that you only wanted to include
mariadb within the tags-example chart. While it would be intuitive to believe you
could simply set tags.database to true and tags.cache to false, this would not
have any effect because tags.backend already defaults to true. If one tag is true, then
the dependency is included, even if the other tags are set to false.

To address this issue, you can override tags.backend to false.

Helm Dependency Management112

12. Upgrade the conditional-example release so that it includes mariadb and excludes
memcached:

$ helm upgrade conditional-example chapter5/examples/
tags-example --set tags.backend=false --set tags.
database=true –n chapter5

Notice that we have passed --set tags.backend=false first to ensure that none of
the memcached conditions evaluate to true.

13. Verify that mariadb was included during the upgrade:

$ helm get manifest conditional-example –n chapter5 |
grep mariadb

This command should return a large amount of output.

14. Verify that memcached was excluded during the upgrade:

$ helm get manifest conditional-example –n chapter5 |
grep memcached

This command should not return any output.

The condition and tags fields both provide a robust set of options for conditionally including
dependencies within your Helm charts. Keep in mind that you can also use both of these options
together, but condition always overrides tags. This means that if all tags evaluate to true, and if
any condition evaluates to false, then the condition will override the tags, and the dependency will
not be included.

As a final step before advancing to the next topic, uninstall the conditional-example release:

$ helm uninstall conditional-example –n chapter5

Next, let’s discuss the options available for altering how dependencies and their values are referenced.

Altering dependency names and values
When you include a dependency within a chart, you will most likely need to alter some of its values.
One way to alter a dependency’s values is to override them under a map whose root has the same
name as the dependency.

For example, consider the basic-fields chart located under chapter5/examples/basic-
fields. This chart contains one dependency in the Chart.yaml file:

dependencies:

 - name: mariadb

 repository: https://raw.githubusercontent.com/bitnami/

Altering dependency names and values 113

charts/archive-full-index/bitnami

 version: 9.5.0

To override the values from the mariadb chart, you could incorporate a values structure, similar
to the following:

mariadb:

 image:

 registry: my-registry.example.com

 repository: my-mariadb

 tag: my-tag

This will override the image.registry, image.repository, and image.tag values from
the mariadb chart.

Let’s experiment with overriding dependency values by completing a hands-on example:

1. Install the basic-fields chart located in chapter5/examples/basic-fields.
Override MariaDB’s image.tag value to deploy a different tag for the mariadb image
than the default:

$ helm install override-example chapter5/examples/basic-
fields --set mariadb.image.tag=latest –n chapter5

2. Verify that the latest tag was applied:

$ helm get manifest override-example –n chapter5 | grep
latest

image: docker.io/bitnami/mariadb:latest

3. Uninstall the Helm release:

$ helm uninstall override-example –n chapter5

Nesting values in this fashion is the simplest and most common way to override the values of
dependencies. However, the dependencies map provides a configuration for altering the root’s
name – alias.

Let’s run through an example to understand how alias can be used.

Observe the Chart.yaml file of the alias-example chart located in chapter5/examples/
alias-example/Chart.yaml:

$ cat chapter5/examples/alias-example/Chart.yaml

<output omitted>

Helm Dependency Management114

dependencies:

 - name: mariadb

 repository: https://raw.githubusercontent.com/bitnami/
charts/archive-full-index/bitnami

 version: 9.5.0

 alias: db1

 - name: mariadb

 repository: https://raw.githubusercontent.com/bitnami/
charts/archive-full-index/bitnami

 version: 9.5.0

 alias: db2

From the preceding Chart.yaml snippet, you can see that alias-example has two nearly
identical MariaDB dependencies. This is the best use case for using alias. Since there are multiple
MariaDB dependencies, Helm needs to be able to distinguish between the two. By using alias, you
can give each identical dependency a unique name. Then, you can override values from each specific
dependency. Let’s explore alias:

1. Install the Helm chart by overriding the image.tag value for each MariaDB instance:

$ helm install alias-example chapter5/examples/alias-
example --set db1.image.tag=latest --set db2.image.
tag=10.4 -n chapter5

2. Verify that each database’s tag was applied:

$ helm get manifest alias-example –n chapter5 | grep
latest

image: docker.io/bitnami/mariadb:latest

$ helm get manifest alias-example –n chapter5 | grep 10.4

image: docker.io/bitnami/mariadb:10.4

3. Uninstall the Helm release:

$ helm uninstall alias-example –n chapter5

In general, when you are working with unique dependencies, you will not need to use alias. However,
when you are working with multiple invocations of the same dependency, alias is an excellent way
to manage and override values from each invocation.

Besides alias, the dependencies map in the Chart.yaml file provides one additional property
for altering how values are managed for dependencies – import-values. The import-values

Altering dependency names and values 115

setting is used to alter how dependency values are propagated to a parent chart. It comes in two
different formats: exports and child-parent. The exports format is only applicable when
dependency charts contain the exports map within its values file. Imagine that a dependency chart
contains the following values:

exports:

 image:

 registry: my-registry

 repository: my-repository

 tag: my-tag

Using the import-values setting on the parent chart, you could import each of the image-related
values underneath exports:

dependencies:

 - name: dependency

 repository: http://localhost:8080

 version: 1.0.0

 import-values:

 - image

Using import-values in exports format would result in the image-related values being
propagated, as follows:

registry: my-registry

repository: my-repository

tag: my-tag

Compare this with the way these dependency values would be propagated by default, without
import-values:

dependency:

 exports:

 image:

 registry: my-registry

 repository: my-repository

 tag: my-tag

As you can see, using import-values resulted in a less complex propagation with fewer deeply
nested values.

Helm Dependency Management116

The other format of import-values is the child-parent format. This format does not require
dependency charts (referred to as child charts) to use exports, and it is especially useful for importing
deeply nested values. Consider the following dependency chart, which contains the following values:

common:

 deployment:

 image:

 registry: my-registry

 repository: my-repository

 tag: my-tag

In the parent chart, you can import the image-related values using the child-parent format of
import-values:

dependencies:

 - name: dependency

 repository: http://localhost:8080

 version: 1.0.0

 import-values:

 - child: common.deployment.image

 parent: image

This will propagate the dependency values so that each value under common.deployment.image
is mapped directly under image in the parent chart:

image:

 registry: my-registry

 repository: my-repository

 tag: my-tag

Once again, by using the import-values setting, you can simplify how dependency values are
propagated into the parent chart.

One important detail to note is that, when using import-values, you cannot override the values
that you are importing. If you need to override values from the dependency, those values should not
be imported using import-values.

Now that we have explored each of the different settings involved in Helm dependency management, let’s
finish this chapter by updating our guestbook chart with a Redis dependency to create the backend.

Updating the guestbook Helm chart 117

Updating the guestbook Helm chart
Similar to how we searched Artifact Hub to locate a WordPress chart in Chapter 3, Installing Your
First App with Helm, we need to search for a Redis chart so that it can be used as a dependency. Let’s
search for a Redis chart:

1. Execute the following command to search for Redis charts from Artifact Hub:

$ helm search hub redis

2. The first chart that’s displayed is Bitnami’s Redis chart. We’ll use this chart as our dependency.
If you didn’t add the bitnami chart repository in Chapter 3, Installing Your First App with
Helm, add this chart repository now by using the helm repo add command:

$ helm repo add bitnami https://raw.githubusercontent.
com/bitnami/charts/archive-full-index/bitnami

3. Next, determine the Redis chart version you would like to use. A list of version numbers can
be found by running the following command:

$ helm search repo redis --versions

You will see an output similar to the following:

Figure 5.6 – Redis chart versions

For our dependency, let’s use the wildcard version 15.5.x so that we can lock in the latest
patch that is currently available, 15.5.1, but also so that we can easily download newer
patch releases as they become available in the future.

Let’s also use the condition property so that Redis can be toggled to enabled or disabled.
While our guestbook chart does require Redis, condition will allow a user to disable
the built-in Redis option so that they can use their own if they desire.

4. Update your guestbook chart’s Chart.yaml file to declare the Redis dependency. An updated
Chart.yaml file is located in this book’s GitHub repository in chapter5/guestbook/
Chart.yaml for reference:

dependencies:

 - name: redis

Helm Dependency Management118

 repository: https://raw.githubusercontent.com/
bitnami/charts/archive-full-index/bitnami

 version: 15.5.x

 condition: redis.enabled

Your full Chart.yaml file should look as follows:

apiVersion: v2

name: guestbook

description: An application used for keeping a running
record of guests

type: application

version: 0.1.0

appVersion: v5

dependencies:

 - name: redis

 repository: https://raw.githubusercontent.com/
bitnami/charts/archive-full-index/bitnami

 version: 15.5.x

 condition: redis.enabled

Now that the Chart.yaml file has been updated, download the Redis dependency by
using helm dependency update. Now, we can deploy the guestbook chart to
ensure that the dependency has been installed properly.

5. Download the latest Redis 15.5.x release by running helm dependency update:

$ helm dependency update guestbook

6. Install the guestbook chart in your minikube environment:

$ helm install guestbook guestbook -n chapter5

7. Verify that the Redis StatefulSets have been created:

$ kubectl get statefulsets –n chapter5

NAME READY AGE

guestbook-redis-master 1/1 3m24s

guestbook-redis-replicas 3/3 3m24s

If you see a similar output for the StatefulSets shown here, then you have successfully created the Redis
dependency! As you can see, by using Helm’s dependency management, the effort required to deploy
the backend was relatively low. In the next chapter, we’ll continue developing the guestbook chart
by writing templates for creating the frontend resources.

Cleaning up 119

Before we wrap up, let’s clean up the minikube environment.

Cleaning up
First, delete the chapter5 namespace:

$ kubectl delete namespace chapter5

Now, you can shut down your minikube environment.

$ minikube stop

Now, let’s summarize this chapter.

Summary
Dependencies can greatly reduce the effort required to deploy complex applications in Kubernetes. As
we saw with our guestbook chart, to deploy a Redis backend, we only needed to add five lines of
YAML to our Chart.yaml file. Compare this to the effort required to write an entirely separate Redis
chart from scratch, which would have required both a high level of Kubernetes and Redis expertise.

Helm dependency management supports several different configurations to declare, as well as
configure dependencies. To declare a dependency, you can specify the chart’s name, version, and
repository under the dependencies map in the Chart.yaml file. You can allow users to
toggle whether to enable or disable each dependency using the condition and tags properties.
When incorporating multiple instances of the same dependency, you can use alias to provide each
with a unique identifier, and when working with dependencies with complex values, you can use
import-values to simplify how values are propagated from a dependency to a parent chart. To
list and download dependencies, Helm provides a set of helm dependency subcommands that
are used regularly when managing chart dependencies.

In the next chapter, we will dive deep into the next crucial topic in the world of Helm chart development
– templates.

Further reading
To learn more about Helm dependency management, visit the Helm documentation’s Chart Dependencies
section at https://helm.sh/docs/topics/charts/#chart-dependencies.

https://helm.sh/docs/topics/charts/#chart-dependencies

Helm Dependency Management120

Questions
Answer the following questions to test your knowledge of this chapter:

1. What file is used to declare chart dependencies?

2. What is the difference between the helm dependency update and helm dependency
build commands?

3. What is the difference between the Chart.yaml and Chart.lock files?

4. Imagine that you want to allow users to enable or disable dependencies within your chart. What
dependencies properties can you use?

5. What dependencies properties should you use if you need to declare multiple invocations
of the same dependency?

6. If you have a dependency with complex values, which dependencies property can you use
to simplify the propagated values?

7. How do you override the values of a dependency?

8. As a chart developer, what is the value of using a chart dependency?

6
Understanding Helm Templates

One of the fundamental features of Helm is to create and maintain the Kubernetes resources that
comprise an application. Helm accomplishes this with a concept called templates. Templates represent
the core component comprising Helm charts, as they are used to configure Kubernetes resources
based on a given set of values.

In Chapter 4, Scaffolding a New Helm Chart, you scaffolded a new Helm chart by using the helm
create command, which created basic templates under the chart’s templates/ folder. In this
chapter, we will dive deep into the world of Helm templates, and at the end, we will revisit the scaffolded
templates to make improvements and deploy the Guestbook frontend. By the end of the chapter, your
Helm chart will be able to deploy the full Guestbook architecture—from the Redis backend added
in Chapter 5, Helm Dependency Management, to the frontend that we will add later in this chapter.

Here are the main topics for this chapter:

• Helm template basics

• Template values

• Built-in objects

• Helm template functions

• Helm template control structures

• Generating release notes

• Helm template variables

• Helm template validation

• Enabling code reuse with named templates and library charts

• Creating custom resource definitions (CRDs)

• Post rendering

• Updating and deploying the Guestbook chart

Understanding Helm Templates122

Technical requirements
This chapter requires the following tools:

• minikube

• kubectl

• Helm

• Git

We will use minikube to explore several examples throughout this chapter, so feel free to start your
minikube environment by running the following command:

$ minikube start

Once minikube has started, create a new namespace for this chapter, like so:

$ kubectl create namespace chapter6

If you have not already cloned the example Git repository in previous chapters, do so by running the
following command:

$ git clone https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

Now that your environment is set up, let’s explore this chapter’s first topic—Helm templating.

Helm template basics
Helm templates are used to dynamically generate Kubernetes YAML Ain’t Markup Language (YAML)
(or JavaScript Object Notation (JSON)) resources. They consume a set of default and user-provided
values to generate resources that comprise a Kubernetes application. You’ve had some exposure to
templates already in Chapter 4, Scaffolding a New Helm Chart, when you ran the helm create
command, which generated a set of starter templates. In the Git repository cloned previously, these
templates are located at chapter6/guestbook/templates/. Here’s a short snippet of the
deployment.yaml Helm template, located within the chapter6/guestbook/templates/
deployment.yaml file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: {{ include "guestbook.fullname" . }}

 labels:

Helm template basics 123

 {{- include "guestbook.labels" . | nindent 4 }}

spec:

 {{- if not .Values.autoscaling.enabled }}

 replicas: {{ .Values.replicaCount }}

 {{- end }}

 selector:

 matchLabels:

 {{- include "guestbook.selectorLabels" . | nindent 6 }}

 template:

 metadata:

 {{- with .Values.podAnnotations }}

 annotations:

 {{- toYaml . | nindent 8 }}

 {{- end }}

 labels:

 {{- include "guestbook.selectorLabels" . | nindent 8 }}

You may find the syntax from the preceding code snippet to be odd, as it resembles a YAML file,
but it contains characters that are invalid per the YAML specification. To understand this syntax,
we must first talk about Go. Go is a programming language developed by Google in 2009. It is the
programming language used by Kubernetes, Helm, and many other tools in the container community.
A core component of the Go programming language is templates, which are used to generate files of
many different formats. Helm’s template engine is built off of Go and can be thought of as a superset
of Go templates. Go templates provide the fundamental syntax and control, while Helm adds extra
capabilities to enhance the template engine’s capabilities.

Helm templates contain various different actions, or strings, that begin with two opening curly braces
({{) and end with accompanying two closing curly braces (}}). Actions mark locations where
data processing occurs or where control structures such as conditionals and loops are implemented.
You can see different actions located throughout the code snippets and in other Helm chart templates
under the templates/ directory. While actions appear in local template files, they are processed and
removed during processing, such as during an installation or upgrade, to produce a valid Kubernetes
YAML resource.

There are many different components such as objects, functions, and control structures that you
can leverage to write actions throughout your Helm chart templates. We will explore each of these
throughout this chapter. Let’s begin by discussing how the values component can be used within
chart templates.

Understanding Helm Templates124

Template values
In previous chapters, we described values as parameters that are used to configure a Helm chart.
Now, we will gain an understanding of how values are integrated into chart templates to dynamically
generate Kubernetes resources.

Here is a basic ConfigMap template from the Git repository at chapter6/examples/values-
example/templates/configmap.yaml:

apiVersion: v1

kind: ConfigMap

metadata:

 name: values-example

data:

 config.properties: |-

 chapterNumber={{ .Values.chapterNumber }}

 chapterName={{ .Values.chapterName }}

The last two lines of this template contain {{ .Values.chapterNumber }} and {{ .Values.
chapterName }} actions, which are used as placeholders for the chapterNumber and
chapterName values. This allows the ConfigMap to be parameterized based on the default chart
values and the values the user provides during installation or upgrade.

Let’s take a look at the default chart values located at chapter6/examples/values-example/
values.yaml. You can see these here:

chapterNumber: 6

chapterName: Understanding Helm Templates

Given this Values file, we would expect the default ConfigMap to be rendered like this:

apiVersion: v1

kind: ConfigMap

metadata:

 name: values-example

data:

 config.properties: |-

 chapterNumber=6

 chapterName=Understanding Helm Templates

Built-in objects 125

You could verify this on your own by running the helm install command, as we have demonstrated
in previous chapters, but it may be more convenient to leverage a new command, helm template,
which is used to render template resources locally, but not install them to the Kubernetes cluster. The
helm template command, as shown here, has the same syntax as helm install:

helm template <RELEASE_NAME> <CHART_NAME> [flags]

Let’s use this command to render the values-example chart templates locally. Proceed as follows:

1. Run the helm template command, pointing the <CHART_NAME> parameter to the
values-example folder, as follows:

$ helm template example chapter6/examples/values-example

2. You should see the ConfigMap rendered as shown previously, with the actions replaced by
chapterNumber and chapterName values, as illustrated in the following code snippet:

<skipped for brevity>

data:

 config.properties: |-

 chapterNumber=6

 chapterName=Understanding Helm Templates

Unless we intend to install resources to the minikube environment, we will use the helm template
command to quickly demonstrate templating constructs throughout this chapter. That way, you won’t
have to worry about cleaning up after each exercise. We will return to using helm install at the
end of this chapter when we install an updated version of the Guestbook Helm chart.

As you saw in the preceding example, templates that reference values refer to a construct called .Values
each time an action is being used as a placeholder for chart values. .Values is one of several built-in
objects that are at your disposal as a Helm chart developer. Let’s explore these built-in objects next.

Built-in objects
Built-in objects are essential building blocks that you can use to write your own Helm charts. As
mentioned previously, they provide access to chart values by using the .Values object, but there
are many more objects to explore that provide access to additional information and features.

Understanding Helm Templates126

The following table lists these built-in objects:

Object Definition
.Values Used to access values in the values.yaml file or values that were provided

using the --values and --set flags
.Release Used to access metadata about the Helm release, such as its name, namespace,

and revision number
.Chart Used to access metadata about the Helm chart, such as its name and version
.Template Used to access metadata about chart templates, such as their filename and path
.Capabilities Used to access information about the Kubernetes cluster
.Files Used to access arbitrary files within a Helm chart directory
. The root object

Table 6.1 – Built-in Helm objects

Each object contains fields and functions that are accessible by using dot notation. Dot notation is
used to access an object’s properties. For example, imagine the following Values file is provided:

books:

 harryPotter:

 - The Sorcerer's Stone

 - The Chamber of Secrets

 - The Prisoner of Azkaban

 lotr:

 - The Fellowship of the Ring

 - The Two Towers

 - Return of the King

The .Values object would now contain the following properties:

• .Values.books.harryPotter (list of strings)

• .Values.books.lotr (list of strings)

In Helm (and Go templates), a dot (.) is also used to represent object scope. The dot represents global
scope, from which all objects are accessible. A dot followed by an object name limits the scope of that
object. For example, the .Values scope limits visibility to the chart’s values, and the .Release
scope limits visibility to the release’s metadata. Scopes play a significant role in loops and control
structures, which we will explore later in this chapter.

Built-in objects 127

While the .Values object is the most common object that you will use throughout Helm chart
development, there are other built-in objects that we will discuss. We’ll start with the .Release
object next.

The .Release object

The .Release object is used to retrieve metadata about the Helm release being installed. Two common
attributes that are used from within the .Release object are .Release.Name and .Release.
Namespace, which allow chart developers to substitute the release name and namespace in their
chart templates.

Consider the following example template, located at chapter6/examples/release-example/
templates/configmap.yaml in the Git repository:

apiVersion: v1

kind: ConfigMap

metadata:

 name: {{ .Release.Name }}

data:

 config.properties: |-

 namespace={{ .Release.Namespace }}

In the template, we are setting the ConfigMap’s name to the name of the Helm release, and we are
setting the namespace property to the release namespace.

When running the Helm install, upgrade, or template commands, you can see the {{
.Release.Name }} and {{ .Release.Namespace }} actions get replaced with their
actual values, as illustrated in the following code snippet:

$ helm template release-example chapter6/examples/release-
example

Source: release-example/templates/configmap.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: release-example

data:

 config.properties: |-

 namespace=default

Understanding Helm Templates128

As you can see, the ConfigMap name has been generated as release-example, and the namespace
property has been generated as default (if we had selected a different namespace using the -n
flag, that value would have been reflected instead). By using the .Release object, we were able
to leverage the name and namespace that were provided when invoking Helm rather than creating
repetitive values in values.yaml for the name and namespace.

There are several more objects besides name and namespace under .Release that you can leverage
in your chart templates. The following table lists each .Release object, with the descriptions quoted
from the Helm documentation at https://helm.sh/docs/chart_template_guide/
builtin_objects/#helm:

Object Description
.Release.Name The release name
.Release.Namespace The namespace to be released into
.Release.IsUpgrade This is set to true if the current operation is an upgrade or rollback
.Release.IsInstall This is set to true if the current operation is an install
.Release.Revision The revision number for this release
.Release.Service The service that is rendering the template (this is always equivalent

to the "Helm" string)

Table 6.2 – .Release objects

We will explore the .Chart object next.

The .Chart object

The .Chart object is used to retrieve metadata from the Chart.yaml file of the Helm chart that is
being installed. It is commonly used for labeling chart resources with the chart name and version. Let’s
take a look at the example template at chapter6/examples/chart-example/templates/
configmap.yaml from the Git repository. You can view this here:

apiVersion: v1

kind: ConfigMap

metadata:

 name: {{ .Release.Name }}

 labels:

 helm.sh/chart: {{ .Chart.Name }}-{{ .Chart.Version }}

 app.kubernetes.io/version: {{ .Chart.AppVersion }}

https://helm.sh/docs/chart_template_guide/builtin_objects/#helm
https://helm.sh/docs/chart_template_guide/builtin_objects/#helm

Built-in objects 129

data:

 config.properties: |-

 chapterNumber={{ .Values.chapterNumber }}

 chapterName={{ .Values.chapterName }}

As you can see in the metadata.labels section, the template is using the {{ .Chart.Name
}}, {{ .Chart.Version }}, and {{ .Chart.AppVersion }} actions, which retrieve
the name, version, and appVersion fields from the Chart.yaml file. Here, you can see the
Chart.yaml file for this example chart:

apiVersion: v2

name: chart-example

description: A Helm chart for Kubernetes

type: application

version: 1.0.0

appVersion: 0.1.0

When we use the helm template command to render this template locally, we see the fields from
the Chart.yaml file are used in the ConfigMap resource, as illustrated here:

$ helm template chart-example chapter6/examples/chart-example

Source: chart-example/templates/configmap.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: chart-example

 labels:

 helm.sh/chart: chart-example-1.0.0

 app.kubernetes.io/version: 0.1.0

data:

 config.properties: |-

 chapterNumber=6

 chapterName=Understanding Helm Templates

The .Chart object can reference any field from the Chart.yaml file. For a full list of Chart.
yaml fields, please refer to Chapter 4, Scaffolding a New Helm Chart.

Understanding Helm Templates130

The .Template object

The .Template object is used to retrieve metadata about the current template that is being rendered.
It is the simplest built-in object (besides .Values) and contains only two objects underneath, as
outlined here:

• .Template.Name—The file path to the template being rendered (such as mychart/
templates/mytemplate.yaml)

• .Template.BasePath—The path leading up to the templates directory (such as
mychart/templates)

In our experience, the .Template object is rarely used, but it can be useful if you need to reference
the template’s file path in your chart.

The .Capabilities object

The .Capabilities object is used for getting information about the target Kubernetes cluster. There
are many objects underneath .Capabilities, but the most common are .Capabilities.
APIVersions.Has and .Capabilities.KubeVersion.

The .Capabilities.APIVersions.Has object is a function that returns a Boolean based on
whether or not the Kubernetes cluster has a given application programming interface (API) version.
Here is an example invocation:

{{ .Capabilities.APIVersions.Has "batch/v1" }}

This action would return true or false based on whether or not the cluster contains the "batch/
v1” API version. .Capabilities.APIVersions.Has is most commonly used in conditional
logic to install a resource only if the cluster contains a particular API version. Conditional logic will
be covered in the Helm template control structures section later in this chapter.

The other commonly used .Capabilities object is .Capabilities.KubeVersion. Use
this property to retrieve the version of the Kubernetes cluster. For example, the following action would
return a v1.21.2 string (or similar, based on the version of Kubernetes being used):

{{ .Capabilities.KubeVersion }}

Other .Capabilities objects, such as .Capabilities.KubeVersion.Major and
.Capabilities.KubeVersion.Minor, allow chart developers to get only the major or minor
version of the Kubernetes cluster (as opposed to the whole Semantic Versioning (SemVer) version).
For a full list of objects under .Capabilities, visit the Helm documentation at https://helm.
sh/docs/chart_template_guide/builtin_objects/#helm.

https://helm.sh/docs/chart_template_guide/builtin_objects/#helm
https://helm.sh/docs/chart_template_guide/builtin_objects/#helm

Built-in objects 131

The .Files object

Occasionally, you may encounter use cases where you need to include contents from files in your
chart templates. You can include file contents by using the .Files object. This is used primarily with
ConfigMap and Secret resources, where the data section is provided or supplemented by a separate
configuration file. Note that files must be located within the Helm chart directory (but outside of the
templates/ folder) in order to be referenced with .Files.

The .Files object contains several other objects underneath. The most basic is .Files.Get,
which is a function that retrieves the contents of the provided filename. Imagine a ConfigMap template
such as this (this template is also located in the Git repository at chapter6/examples/files-
example/get):

apiVersion: v1

kind: ConfigMap

metadata:

 name: {{ .Release.Name }}

data:

 config.properties: |-

 {{ .Files.Get "files/config.properties" }}

The .Files.Get function in the example is being used to get the contents of the files/config.
properties file, which is a path relative to the Helm chart root. This file is located at chapter6/
examples/files-example/get/files/config.properties in the Git repository and
contains the following:

chapterNumber=6

Now, when we render this template, we will see the following output:

$ helm template basic-files-example chapter6/examples/files-
example/get

Source: files-example/templates/configmap.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: basic-files-example

data:

 config.properties: |-

 chapterNumber=6

Understanding Helm Templates132

Three other important objects under .Files are .Files.Glob, .Files.AsConfig, and
.Files.AsSecret. First, .Files.Glob, is a function that returns a list of file objects that match
a provided global (glob) pattern. A glob pattern is a set of names with wildcard characters (*). For
example, the files/* glob would match each file under the files/ folder.

The .Files.Glob object is commonly used with .Files.AsConfig and .Files.AsSecrets
objects. .Files.AsConfig is a function used to return the file as a YAML dictionary, where the
key is the name of the file and the value is the file contents. It is called AsConfig because it is useful
when formatting different ConfigMap data entries. The .Files.AsSecrets function is similar,
but in addition to returning files as a YAML map, AsSecrets also Base64-encodes the contents of
the file—this is useful for creating data for Kubernetes Secrets. Do keep in mind that sensitive files
should never be checked into a Git repository in plaintext (though we have one such file in the example
Git repository for demonstration purposes).

The following templates demonstrate the usage of these objects and are also located in the Git repository
at chapter6/examples/files-example/glob:

apiVersion: v1

kind: ConfigMap

metadata:

 name: {{ .Release.Name }}

data:

{{ (.Files.Glob "files/chapter*").AsConfig | indent 2 }}

kind: Secret

<skipped for brevity>

Data:

{{ (.Files.Glob "files/secret*").AsSecrets | indent 2 }}

The files folder contains the following files:

• chapter.properties

• secret.properties

When this template is rendered, the contents of both files are generated as YAML maps under the
ConfigMap’s data, as illustrated in the following code snippet:

$ helm template glob-example chapter6/examples/files-example/
glob

Helm template functions 133

Source: files-example/templates/configmap.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: glob-example

data:

 chapter.properties: |

 chapterNumber=6

 chapterName=Understanding Helm Templates

Source: files-example/templates/secret.yaml

apiVersion: v1

kind: Secret

<skipped for brevity>

 secret.properties:
dXNlcm5hbWU9bXl1c2VyMTIzCnBhc3N3b3JkPW15cGFzczEyMwo=

In the previous example, you likely noticed the usage of | indent 2. This represents a pipeline
and function that will be explored thoroughly in the next section, Helm template functions. For now,
all you need to worry about is that the output is indented by two spaces in order to produce properly
formatted ConfigMap and Secret resources.

Other .Files objects are .Files.GetBytes, which returns a file as an array of bytes, and
.Files.Lines, which is used to iterate over each line of a file.

Helm template functions
One of the common traits of any templating language is the ability to transform data. Thus far, when
referring to .Values or any of the other built-in objects within Helm, we have only made reference
to the resource as-is, without any form of data manipulation. Where Helm really begins to shine and
show its true power is its ability to perform complex data processing within templates through the
use of template functions and pipelines.

Since Helm uses Go as the basis for its own templating language, it inherits the capabilities provided by
functions. A Go template function is comparable to any other function that you may have interacted
with in another programming language. Functions contain logic designed to consume certain inputs
and provide an output based on the inputs that were provided.

When using Go templates, functions make use of the following syntax:

functionName arg1 arg2 . .

Understanding Helm Templates134

A function that is commonly used within Helm charts is the quote function, as it encompasses
quotation marks surrounding an input string. Take the following ConfigMap located in chapter6/
examples/functions-example/templates/configmap.yaml from the Git repository:

apiVersion: v1

kind: ConfigMap

metadata:

 name: {{ .Release.Name }}

 labels:

 helm.sh/chart: {{ .Chart.Name }}-{{ .Chart.Version }}

 app.kubernetes.io/version: {{ .Chart.AppVersion }}

 annotations:

 {{- toYaml .Values.annotations | nindent 4 }}

data:

 path: {{ .Values.fs.path }}

 config.properties: |-

 {{- (.Files.Get "files/chapter-details.cfg") | nindent 4}}

The path property in the preceding ConfigMap represents a filesystem location that is consumed
by an application, as shown in the following code snippet. The value referenced by this property is
located in the values.yaml file:

fs:

 path: /var/props/../configs/my app/config.cfg

The resulting template would be rendered as follows (some fields were omitted for brevity):

...

data:

 path: /var/props/../configs/my app/config.cfg

...

A potential downstream issue within a consuming application could result if it did not contain logic
to appropriately manage whether spaces could be present within the input.

To avoid these potential issues, add the quote function that will surround the property with quotation
marks, as shown in the following code snippet:

apiVersion: v1

kind: ConfigMap

metadata:

Helm template functions 135

 name: {{ .Release.Name }}

 labels:

 helm.sh/chart: {{ .Chart.Name }}-{{ .Chart.Version }}

 app.kubernetes.io/version: {{ .Chart.AppVersion }}

 annotations:

 {{- toYaml .Values.annotations | nindent 4 }}

data:

 path: {{ quote .Values.fs.path }}

...

Use the helm template command to render the chart locally to see the function in action, as follows:

$ helm template functions-example chapter6/examples/functions-
example

The result upon template rendering produces a/var/props/../configs/my app/config.
cfg string that not only enhances the readability of the property but protects any consuming application.

quote is just one of over 60 functions included within Helm. While some of the functions are sourced
from Go templates, the majority are part of the Sprig template library. The Sprig library includes
functions to implement more complex capabilities within charts, such as the ability to perform
mathematical formulas, conversion operations, and the management of data structures, including
lists and dictionaries.

The functions inherited from Go and Sprig can be found in the Go documentation at https://
pkg.go.dev/text/template#hdr-Functions and in the Sprig template library at http://
masterminds.github.io/sprig/.

One of the more recent functions added to Helm is the ability to query resources from a running
Kubernetes environment through the use of the lookup function. Helm chart developers can make
reference to a single resource or references of a given type across a namespace or cluster and inject
the results within their templates.

The lookup function takes the following form:

lookup <apiVersion> <kind> <namespace> <name>

For example, to query a ConfigMap called props in the chapter6 namespace, use the following
function:

lookup "v1" "ConfigMap" "chapter6" "props"

The result from the lookup function is a dictionary that can be further navigated as necessary to
retrieve individual properties on the returned resource.

https://pkg.go.dev/text/template#hdr-Functions
https://pkg.go.dev/text/template#hdr-Functions
http://masterminds.github.io/sprig/
http://masterminds.github.io/sprig/

Understanding Helm Templates136

So, to extract a property defined on a ConfigMap called author containing the default name of the
author for all WordPress posts, the following code would be added within a Helm template:

{{ (lookup "v1" "ConfigMap" "chapter6" "props").data.author }}

As you can see, we are first retrieving a dictionary of values containing the props ConfigMap and
then navigating to the author property on the ConfigMap data structure.

You are not limited to querying for a single resource when using the lookup function and can instead
search for all resources of a given type within a single namespace or within all namespaces. This can
be accomplished by substituting empty quotes for either the namespace and/or resource name, as
shown in the following template:

lookup "v1" "ConfigMap" "chapter6" ""

One final important note when working with the lookup function is that it can only be used when
resources are being deployed to a Kubernetes cluster, such as through the helm install and
helm upgrade commands. This is due to the requirement that there be an active connection to a
Kubernetes cluster as part of the execution process being performed. For commands such as helm
template, where templates are being rendered locally and there is no interaction with a Kubernetes
cluster, the lookup function will not return any meaningful results.

Helm functions and their ability to influence Helm template commands are just the first steps toward
adding more dynamic mechanisms to chart templates. Multiple template commands can also be
chained together to perform a series of complex actions through the use of pipelines.

Pipelines are a borrowed concept from Unix where the result from one command is fed in as the input
of another command. You can see an illustration of this in the following code snippet:

cat file.txt | grep helm

Commands are separated by the pipe (|) character (hence the name pipeline) where in this case, the
output of the contents of the file.txt file is provided as an input to the grep command. grep
processes the input, filters out any presence of the word helm from the input, and provides it as an
output that is printed to the screen.

Pipelines can be applied to Helm in a similar fashion. Let’s return to the prior example where we
introduced the quote function to add quotation marks to a filesystem path. Instead of using the
value property as a function argument, inverse the order to pipe the contents of the value into the
quote function, as follows:

{{ .Values.fs.path | quote }}

The end result remains the same whether calling the function directly or using the pipeline approach.
However, in practice, you will find that pipelines are the preferred option over directly invoking
functions, given the extensibility of chinning template commands.

Helm template functions 137

You may also have noticed that the fs.path value includes a reference to a relative path (denoted by
..). This may be difficult for some to read and or understand if they are unfamiliar with the syntax.
Fortunately, there is a function included in the Sprig library called clean that can resolve the path
fully and remove any relative paths automatically. This function can be added to the existing pipeline,
as shown here:

{{ .Values.fs.path | clean | quote }}

In the ConfigMap within the functions-example Helm chart from the Git repository, apply
the preceding changes and then use the helm template command to see the changes in action.
Upon instantiation, the rendered template would look like this:

"/var/configs/my app/config.cfg"

Functions and pipelines are both extensively used within Helm, and it is important that as a chart
developer, you have insights into the available options in order to design charts effectively. Let’s take
a moment to look at a few more commonly used functions.

Values files, as we have seen, contain a dictionary of key/value pairs. While individual key/value
pairs can be referenced, there are plenty of situations where a deeply nested structure would want to
be injected instead. Fortunately, several Helm functions can help in this situation.

As you recall, the YAML language is very particular about the specific indentation and spacing of
content. To account for this, Helm provides the toYaml function, which allows a dictionary of
values to be provided, and for it to be formatted appropriately, regardless of how deeply nested it
is. An example of this can be found within the ConfigMap that we have been using thus far in this
section where a dictionary of annotations is injected from properties defined in the Values file, as
illustrated in the following code snippet:

apiVersion: v1

kind: ConfigMap

metadata:

 name: {{ .Release.Name }}

 labels:

 helm.sh/chart: {{ .Chart.Name }}-{{ .Chart.Version }}

 app.kubernetes.io/version: {{ .Chart.AppVersion }}

 annotations:

 {{- toYaml .Values.annotations | nindent 4 }}

data:

…

Understanding Helm Templates138

The following content is defined within the chart values.yaml file:

annotations:

 publisher: "Packt Publishing"

 title: "Managing Kubernetes Resources Using Helm"

You may also notice that the result of the toYaml function is then piped to another function called
nindent. The use of this function is a necessary requirement to manage the formatting of the
content; otherwise, a rendering error would occur. Both indent and nindent provide formatting
capabilities by indenting content a certain number of spaces, crucial when working with YAML. The
difference between indent and nindent is that nindent will add a newline character after each
line of input, a required step in our use case as there are multiple annotation properties defined within
the Values file.

Process the chart using the helm template command to visualize how these values would be
rendered, as follows:

$ helm template functions-example chapter6/examples/functions-
example

apiVersion: v1

kind: ConfigMap

metadata:

 name: functions-example

 labels:

 helm.sh/chart: functions-example-0.1.0

 app.kubernetes.io/version: 1.16.0

 annotations:

 publisher: Packt Publishing

 title: Managing Kubernetes Resources Using Helm

The final Helm function that we will look at in detail is used when performing more complex rendering
of templates. Earlier in this chapter, you learned how external files can be referenced within charts
and their values injected into templates using the built-in .Files object. While Helm’s templating
capabilities can be used to evaluate resources within template files, there are cases where there is a
need to perform evaluation against externally sourced files. Take a look here at the ConfigMap once
again and note the config.properties key:

 config.properties: |-

 {{- (.Files.Get "files/chapter-details.cfg") | nindent 4}}

Helm template functions 139

Instead of including the values directly within the ConfigMap, they are instead sourced from a file
located at files/chapter-details.cfg, as illustrated in the following code snippet:

chapterNumber={{ .Values.book.chapterNumber }}

chapterName={{ .Values.book.chapterName }}

However, when the chart is rendered using helm template, the desired values are not substituted
as we would expect, as we can see here:

 config.properties: |-

 chapterNumber={{ .Values.book.chapterNumber }}

 chapterName={{ .Values.book.chapterName }}

This situation occurs since template processing only occurs by default, within files in the templates
folder and not in any externally sourced content. To apply templating to external sources that are
brought into templates, the tpl function can be used, as shown here:

...

 config.properties: |-

 {{- tpl (.Files.Get "files/chapter-details.cfg") . |
nindent 4}}

What you may be wondering about when looking at the updated content of the ConfigMap is the
presence of the period (.) before the pipe. This character indicates the scope that will be passed to
the templating engine. We will cover this topic in detail in the next section.

Use the helm template command to confirm that values are substituted appropriately thanks to
the inclusion of the tpl function, as follows:

$ helm template functions-example chapter6/examples/functions-
example

...

 config.properties: |-

 chapterNumber=6

 chapterName=Understanding Helm Templates

The template functions addressed in this section only scratch the surface of the functions provided
by Helm. The following table lists a few other important functions that chart developers should be
aware of in order to fully take advantage of what Helm has to offer:

Understanding Helm Templates140

Function Description Example
printf Returns a string based upon a

formatting string and arguments
printf "A cat named %s has
%d lives." $name $numLives

default Assigns a string “placeholder” if the
content of $value is nil or empty

default "placeholder"
$value

list Returns a new list based upon a
series of inputs

list "ClusterIP" "NodePort"
"LoadBalancer"

has Determines if an element is present
in a list

has 4 $list

b64enc/b64dec Encodes or decodes with Base64.
Useful when working with Secrets.

b64enc $mySecret

atoi Convert a string to an integer atoi $myIntegerString

add Adds a list of integers add 1 2 3

upper/lower Convert the entire string to
uppercase or lowercase

upper $myString

now Gets the current date and time Now

date Formats a date in the
specified format

now | date "2006-01-02"

Table 6.3 – A list of common Helm functions

With a better understanding of the ways that Helm can be used to manipulate and format content
within templates using functions, let’s turn to how we can introduce flow control to manage the
content that will be rendered.

Helm template control structures
The way in which templates are generated can be managed by chart developers thanks to the functionality
provided by control structures. Included in the actions component of the Go templates, control
structures enable fine-grained flow control for determining the types of resources that should be
generated and how they are rendered.

The following control-structure keywords are available:

• if/else—Creating conditional blocks for resource generation

• with—Modifying the scope of resources being generated

• range—Looping over a set of resources

Helm template control structures 141

There are occasions where portions of a template would need to be included or excluded based on
some sort of condition. In this situation, an if/else action can be used. Here is a basic example for
conditionally determining whether to include a readiness probe as part of a deployment resource:

{{- if .Values.readinessProbe.enabled }}

readinessProbe:

 httpGet:

 path: /healthz

 port: 8080

 scheme: HTTP

 initialDelaySeconds: 30

 periodSeconds: 10

{{- end }}

The readinessProbe section will only be included when the condition evaluates to true.
However, it is important to note that the condition is actually a pipeline where multiple statements
can be chained together to aid in the creation of complex conditionals. The logic behind the if/else
action can also be interpreted as follows:

{{ if PIPELINE }}

 # Do something

{{ else if OTHER PIPELINE }}

 # Do something else

{{ else }}

 # Default case

{{ end }}

The conditional statements and their associated if/else action should look familiar to anyone
with prior programming experience. But what is the logic behind determining whether a pipeline is
true or false?

A pipeline fails to evaluate to true when the following is returned:

• A false Boolean

• A numeric 0

• An empty string

• nil (whether it be empty or null)

• An empty collection

Understanding Helm Templates142

So, in the previous scenario where conditional logic is applied to the readiness probe, the probe would
only be included if the value is readinessProbe.enabled=true.

Nesting of conditionals can also be applied within templates. The following code snippet illustrates how
conditionals can be used to determine the type of probe that should be applied to readinessProbe:

 {{- if .Values.readinessProbe.enabled }}

readinessProbe:

{{- if eq .Values.readinessProbe.type "http" }}

 httpGet:

 path: /healthz

 port: 8080

 scheme: HTTP

 initialDelaySeconds: 30

 periodSeconds: 10

{{- else }}

 tcpSocket:

 port: 8080

{{- end }}

{{- end }}

An httpGet probe type will be applied when the readinessProbe.type property is equal to
"http". Otherwise, a Transmission Control Protocol (TCP) probe will be used.

eq (short for equals) within the if statement is one of the available Boolean functions that test the
equality of the two arguments. When the readinessProbe.type is equal to http, the httpGet
probe type will be applied. Otherwise, a TCP probe type will be used.

A full list of available Boolean functions is provided here:

• and

• or

• not

• eq (short for equals)

• ne (short for not equals)

• lt (short for less than)

• le (short for less than or equal to)

• gt (short for greater than)

• ge (short for greater than or equal to)

Helm template control structures 143

Another method of flow control available for chart developers is the ability to modify the scope of
the resources being rendered. A period (.) represents the current scope, and thus far, we have been
operating at the root or top-level scope. Each of the built-in objects that were covered earlier in this
chapter is available at this level. However, when working with objects with deeply nested structures,
there may be a desire to modify the scope being applied to avoid rather unwieldy property references.

The with action provides these necessary capabilities to modify the current scope.

Take a look at the flowcontrol-example Helm chart located at chapter6/examples/
flowcontrol-example within the Git repository. Included within the values.yaml file is a
deeply nested dictionary of properties, as illustrated here:

book:

 chapter6:

 props:

 chapterNumber: 6

 chapterName: Understanding Helm Templates

These values should look familiar given that they have been used several times in this chapter, but note that
they are now placed into a deeply nested dictionary. They could be referenced in the following manner:

chapterNumber: {{ .Values.book.chapter6.props.chapterNumber }}

chapterName: {{ .Values.book.chapter6.props.chapterName }}

However, by using the with action, the current scope is changed so that references within the block
begin at .Values.book.chapter6.props, greatly increasing the readability and reducing the
complexity. You can see an illustration of this in the following code snippet:

{{- with .Values.book.chapter6.props }}

 chapterNumber: {{ .chapterNumber }}

 chapterName: {{ .chapterName }}

{{- end }}

This is illustrated within the ConfigMap located at chapter6/examples/flowcontrol-
example/templates/configmap.yaml. Render the chart using the helm template
command to confirm that values within the ConfigMap are generated properly, as follows:

$ helm template flowcontrol-example chapter6/examples/
flowcontrol-example

One very important note when modifying scope is that chart developers may be caught off guard
when attempting to reference any built-in objects such as .Release or .Chart within a block
where the current scope has changed.

Understanding Helm Templates144

Attempting to use the following templating within the ConfigMap would result in an error upon
instantiation:

{{- with .Values.book.chapter6.props }}

 chapterNumber: {{ .chapterNumber }}

 chapterName: {{ .chapterName }}

 ChartName: {{ .Chart.Name }}

{{- end }}

Error: template: flowcontrol-example/templates/configmap.
yaml:12:22: executing "flowcontrol-example/templates/configmap.
yaml" at <.Chart.Name>: nil pointer evaluating interface
{}.Name

This is due to the fact that the current scope within the with statement is no longer at the root scope
where the built-in objects reside. Fortunately, Helm provides a way to reference the root scope by
using $. By adding $ to the .Chart.Name reference, a rendering error will no longer occur. You
can see this in use in the following code snippet:

{{- with .Values.book.chapter6.props }}

 chapterNumber: {{ .chapterNumber }}

 chapterName: {{ .chapterName }}

 ChartName: {{ $.Chart.Name }}

{{- end }}

The final flow-control action that chart developers need to be aware of is range—this is useful when
performing foreach style iteration over lists and dictionaries. Similar to the with action, the range
action also modifies the scope of resources being rendered.

For example, say the following were included as values within a values.yaml file to represent ports
associated with a Service resource:

service:

 ports:

 - name: http

 port: 80

 targetPort: 8080

 - name: https

 port: 443

 targetPort: 8443

Generating release notes 145

By using the range action, these values can be then applied to the Service, as shown in the
following example:

apiVersion: v1

kind: Service

metadata:

 name: {{ .Release.Name }}

 labels:

 helm.sh/chart: {{ .Chart.Name }}-{{ .Chart.Version }}

 app.kubernetes.io/version: {{ .Chart.AppVersion }}

spec:

 type: ClusterIP

 ports:

 {{- range .Values.service.ports }}

 - port: {{ .port }}

 targetPort: {{ .targetPort }}

 protocol: TCP

 name: {{ .name }}

 {{- end }}

 selector:

 app: {{ .Release.Name }}

The range action modifies the scope in a similar fashion as the with action so that within the block,
the current scope represents each port within the ports list during each iteration of the loop and can be
referenced accordingly. An example of this in practice can be found in the flowcontrol-example
chart within the Git repository located at chapter6/examples/flowcontrol-example.

Generating release notes
One special type of Helm template is called the NOTES.txt file, located in a Helm chart’s templates/
folder. This file is used to dynamically generate usage instructions (or other details) for applications
once they are installed with Helm.

A NOTES.txt file uses the same exact templating syntax as Kubernetes resource templates and can
be seen in the following example:

Follow these instructions to access your application.

{{- if eq .Values.serviceType "NodePort" }}

export NODE_PORT=$(kubectl get --namespace {{ .Release.
Namespace }} -o jsonpath="{.spec.ports[0].nodePort}" services

Understanding Helm Templates146

{{.Release.Name }})

export NODE_IP=$(kubectl get nodes --namespace {{ .Release.
Namespace }} -o jsonpath="{.items[0].status.addresses[0].
address}")

echo "URL: http://$NODE_IP:$NODE_PORT

{{- else }}

export SERVICE_IP=$(kubectl get svc --namespace {{ .Release.
Name }} wordpress --template "{{ range (index .status.
loadBalancer.ingress 0) }}{{.}}{{ end }}")

echo "URL: http://$SERVICE_IP"

{{- end }}

These examples would provide instructions on how to access applications deployed by the chart. They
would be displayed during the install, upgrade, and rollback phases, and can be recalled by running
the helm get notes command. By providing a NOTES.txt file, chart developers can provide
additional insight on how to better use applications that have just been deployed.

In the next section, we will discuss Helm template variables.

Helm template variables
In addition to leveraging values and other built-in objects, chart developers can create variables of
their own within chart templates to provide additional processing options. A common use case for
this approach is flow control, but template variables can serve other use cases as well.

A variable in a chart template is defined as follows:

{{ $myvar := "Hello World!" }}

The preceding example creates a variable called myvar and sets the value to a string equaling to Hello
World!. Variables can be assigned to objects as well, such as a chart’s values, as illustrated here:

{{ $myvar := .Values.greeting }}

Once a variable is defined, it can be referenced in the following way:

data:

 greeting.txt: |-

 {{ $myvar }}

Helm template variables 147

Another example of using variables is in a range block, where variables capture the index and value
of list iterations, as illustrated in the following code snippet:

data:

 greetings.txt

{{- range $index, $value := .Values.greetings }}

 Greeting {{ $index }}: {{ $value }}

{{- end }}

index represents the current loop iteration number and value represents the value from the list
for the iteration. The previous snippet is rendered as follows:

data:

 greetings.txt

 Greeting 0: Hello

 Greeting 1: Hola

 Greeting 2: Hallo

Variables can also simplify the processing of map iterations, as shown here:

data:

 greetings.txt

{{- range $key, $val := .Values.greetings }}

 Greeting in {{ $key }}: {{ $val }}

{{- end }}

A possible result might look like this:

data:

 greetings.txt

 Greeting in English: Hello

 Greeting in Spanish: Hola

 Greeting in German: Hallo

Another common use case for Helm variables is to refer to values outside of the current scope.

Consider the following with block:

{{- with .Values.application.configuration }}

My application is called {{ .Release.Name }}

{{- end }}

Understanding Helm Templates148

A template such as this one would fail to process since .Release.Name is not under the scope
of .Values.application.configuration. One way this can be remedied is by setting a
variable to .Release.Name above the with block, as follows:

{{ $appName := .Release.Name }}

{{- with .Values.application.configuration }}

My application is called {{ $appName }}

{{- end }}

While this is a possible solution to this problem, the approach of using a dollar sign ($) to refer to the
global scope is preferred as it requires fewer lines to configure and is easier to read as the complexity
increases. In this case, this template could be rewritten like so:

{{- with .Values.application.configuration }}

My application is called {{ $.Release.Name }}

{{- end }}

We will explore template validation next.

Helm template validation
When working with Kubernetes and Helm, input validation is automatically performed by the
Kubernetes API server when a new resource is created. This means that if an invalid resource is
created by Helm, an error message will be returned by the API server, resulting in a failed installation.
Although Kubernetes performs input validation, there may still be cases in which chart developers
will want to perform validation before the resources reach the API server, such as to return a simple
error message or to limit the range of possibilities to the user.

In Helm, input validation refers to validating user-provided values to ensure that users have provided
a proper set of values. You can perform this validation in three different ways (or a combination of
these three), as follows:

• Using the fail function

• Using the required function

• Using a values.schema.json file

Let’s begin exploring input validation by first looking at the fail function.

The fail function

The fail function is used to immediately fail the Helm installation and is often used in cases where
users have provided an invalid value. In this section, we’ll explore an example use case of the fail

Helm template validation 149

function that restricts user input and halts the installation if the user has provided a value outside of
the expected set of values.

Many Helm charts support values for setting the Kubernetes Service type. There are many different
Service types that a user could choose from, but here are a few:

• ClusterIP: Assigns an Internet Protocol (IP) address to the Service. Reachable only from
within the cluster.

• NodePort: Exposes a port on each Kubernetes node. Reachable from outside the cluster.

• LoadBalancer: Creates a load balancer on the cloud provider where Kubernetes is deployed,
if applicable.

Let’s assume that we want to restrict users to be able to only create a ClusterIP or NodePort
Service. We can use the fail function to fail and provide an error message if the Service type is not
one of these two types.

The example in the Git repository, located at chapter6/examples/fail-example, demonstrates
this use case. In the values.yaml file, we see the following value:

service:

 type: ClusterIP

In the service.yaml template (located in the chart’s templates/ folder), we see the following
lines of code:

{{- $serviceTypes := list "ClusterIP" "NodePort" }}

{{- if has .Values.service.type $serviceTypes }}

 type: {{ .Values.service.type }}

{{- else }}

 {{- fail "value 'service.type' must be either 'ClusterIP' or
'NodePort'" }}

{{- end }}

In the previous template snippet, we first created a variable called serviceTypes and set it to a
list of strings, containing the ClusterIP and NodePort types. Then, in an if action, we used
the has function to determine whether or not the service.type value was included in the
serviceTypes list, representing the set of permitted values. If the value provided was found, then
we assume that the input was valid and render the service type and proceed with the installation.
Otherwise, the fail function would be invoked, failing the installation and displaying to the user a
message that explains the reason for the failure.

Since the default service is already ClusterIP (as seen in the values.yaml file), we know that
running helm template or helm install without providing any additional values would be

Understanding Helm Templates150

successful. But let’s see what happens if we try to set the service.type value to an invalid setting,
such as LoadBalancer. This is what we’d see:

$ helm template fail-example chapter6/examples/fail-example
--set service.type=LoadBalancer

Error: execution error at (fail-example/templates/service.
yaml:10:6): value 'service.type' must be either 'ClusterIP' or
'NodePort'

As you can see in the error message, the fail function caused rendering to fail early and displays
an error message that was coded in the Service template.

Let’s look at the next way to perform input validation—the required function.

The required function
The required function, as with fail, is also used to halt template rendering. The difference is that,
unlike fail, the required function is used to ensure that a value is not left blank when a chart’s
templates are rendered. It is named as such because it requires a user to provide a value when specified.

Take a look at this snippet of the values.yaml file from the chart at chapter6/examples/
required-example:

service:

 type:

In the service.yaml template for this chart, we see the following output:

spec:

 type: {{ required "value 'service.type' is required" .Values.
service.type }}

This invocation of required checks to see if the string represented by the service.type value
is empty. If it is empty, rendering fails and an error message is displayed. Otherwise, it renders the
service.type value.

We can see this in action by using the helm template command, as follows:

$ helm template required-example chapter6/examples/required-
example

Error: execution error at (required-example/templates/service.
yaml:6:11): value 'service.type' is required

As expected, we receive an error message stating that the service.type value is required. The
user can then remedy this error by providing a value for service.type by using either the --set
or --values flags.

Helm template validation 151

Let’s explore the final validation method that we will touch upon—the values.schema.json file.

The values.schema.json file

The values.schema.json file is used to define and enforce a schema for your chart’s values.
Whereas the required and fail functions are invoked from within chart templates, the values.
schema.json file allows you to set value requirements and constraints in a single location. This file
also adds additional validation capabilities, such as setting minimums and maximums for integer values.

The values.schema.json file is based on the JSON Schema vocabulary. An exhaustive overview
of JSON Schema is out of scope for this book, but you can explore the vocabulary yourself by visiting
http://json-schema.org/specification.html.

Let’s review an example values.schema.json file, located in the chart at chapter6/examples/
schema-example within the Git repository. You can see a representation of this here:

Figure 6.1 – Sample values.schema.json file

http://json-schema.org/specification.html

Understanding Helm Templates152

This schema provides validation for the following objects under .Values:

Object Validation
.Values.image Ensures that the image object exists
.Values.image.repository Ensures that the image.repository value exists and

is a string
.Values.image.tag Ensures that the image.tag value exists and is a string
.Values.service Ensures that the service object exists
.Values.service.type Ensures that the service.type value exists and is set

to either ClusterIP or NodePort
.Values.service.port Ensures that the service.port value exists and is

greater than or equal to 8080

Table 6.4 – Values that are validated in the example values.schema.json file

As shown in the preceding table, there is a lot of robust validation being performed by providing the
values.schema.json file. More values could be added to the schema file, but we’ve only included
a small amount for demonstration purposes. Sometimes, it is useful to include all supported values
in the values.schema.json file for purposes of self-documentation or to ensure that all values
are strictly validated.

When using a values.schema.json file, error messages are handled for you automatically. For
example, let’s see what happens if we try to set service.type to LoadBalancer (which is not
supported in the enumerator (enum) defined in the schema). Here’s the result:

$ helm template schema-example chapter6/examples/schema-example
--set service.type=LoadBalancer

Error: values don't meet the specifications of the schema(s) in
the following chart(s):

schema-example:

- service.type: service.type must be one of the following:
"ClusterIP", "NodePort"

Notice we did not have to specify the specific error message to return to the user—the JSON Schema
library provided it for us.

In this section, we reviewed three different input validation strategies. Next, we’ll look at enabling
template reuse with named templates and library charts.

Enabling code reuse with named templates and library charts 153

Enabling code reuse with named templates and library
charts
When creating template files, there may be boilerplate or repetitive blocks of YAML among the different
Kubernetes resources in a chart.

For example, you may strive to use a consistent set of labels for each resource, as illustrated here:

labels:

 "app.kubernetes.io/instance": {{ .Release.Name }}

 "app.kubernetes.io/managed-by": {{ .Release.Service }}

 "helm.sh/chart": {{ .Chart.Name }}-{{ .Chart.Version }}

 "app.kubernetes.io/version": {{ .Chart.AppVersion }}

The preceding labels could be copy-pasted manually throughout your templates, but this would be
cumbersome, especially if you wanted to make updates to these labels in the future. To help reduce the
amount of boilerplate code and to enable reuse, Helm provides a construct called named templates.

Named templates, as with regular Kubernetes templates, are defined under the templates/ directory.
They begin with an underscore and end with the .tpl file extension. Many charts (including our
Guestbook chart) leverage a file called _helpers.tpl that contains these named templates, though
the file does not need to be called helpers. When creating a new chart with the helm create
command, this file is included in the scaffolded set of resources.

To create a named template, chart developers can leverage the define action. The following example
creates a named template that can be used to encapsulate resource labels:

{{- define "mychart.labels" }}

labels:

 "app.kubernetes.io/instance": {{ .Release.Name }}

 "app.kubernetes.io/managed-by": {{ .Release.Service }}

 "helm.sh/chart": {{ .Chart.Name }}-{{ .Chart.Version }}

 "app.kubernetes.io/version": {{ .Chart.AppVersion }}

{{- end }}

The define action takes a template name as an argument. In the preceding example, the template
name is called mychart.labels. The common convention for naming a template is $CHART_
NAME.$TEMPLATE_NAME, where $CHART_NAME is the name of the Helm chart and $TEMPLATE_
NAME is a short, descriptive name that describes the purpose of the template. The mychart.labels
name implies that the template is native to the mychart Helm chart and will generate labels for
resources it is applied to.

Understanding Helm Templates154

To use a named template in a Kubernetes YAML template, you can use the include function, which
has the following usage:

include [TEMPLATE_NAME] [SCOPE]

The TEMPLATE_NAME parameter is the name of the named template that should be processed. The
SCOPE parameter is the scope in which values and built-in objects should be processed. Most of the
time, this parameter is a dot (.) to denote the current top-level scope, but any scope could be provided
including the dollar-sign ($) symbol, which should be used if the named template references values
outside of the current scope.

The following example demonstrates how the include function is used to process a named template:

metadata:

 name: {{ .Release.Name }}

{{- include "mychart.labels" . | indent 2 }}

This example begins by setting the name of the resource to the name of the release. It then uses the
include function to process the labels and indents each line by two spaces, as declared by the
pipeline. When processing is finished, a rendered resource may appear as follows for a release called
template-demonstration:

metadata:

 name: template-demonstration

 labels:

 "app.kubernetes.io/instance": template-demonstration

 "app.kubernetes.io/managed-by": Helm

 "helm.sh/chart": mychart-1.0.0

 "app.kubernetes.io/version": 1.0

Helm also provides a template action that can also expand named templates. This action has the
same usage as include, but with one major limitation—it cannot be used in a pipeline to provide
additional formatting and processing capabilities. The template action is used to simply display
data inline. Because of this limitation, chart developers should use the include function over the
template action since include has feature parity with template but also provides additional
processing options.

Named templates are excellent for reducing boilerplate in a single Helm chart, but imagine you want
to share common boilerplate (such as labels) across multiple Helm charts. To do this, you can leverage
library charts. Library charts are similar in structure to application charts, but their type field in
Chart.yaml is set to library. Library charts also differ in that they cannot be installed—a library
chart’s purpose is to provide a set of helper templates that can then be imported among different
application charts by using dependency management.

Creating CRDs 155

An example of a library chart is Bitnami’s common chart, which can be seen at the following link:
https://github.com/bitnami/charts/tree/master/bitnami/common. There,
you will find that each of the chart’s templates is actually a tpl file that contains named templates
within. Here is an abbreviated list from Bitnami’s common library chart:

• _affinities.tpl

• _capabilities.tpl

• _errors.tpl

• _images.tpl

These named templates can be used by adding the following dependency to any application Helm chart:

dependencies:

 - name: common

 version: 0.x.x

 repository: https://raw.githubusercontent.com/bitnami/
charts/archive-full-index/bitnami

Then, any chart importing this dependency can leverage any template by referencing the template name
with the include function—for example, {{ include "common.names.fullname" . }}.

In the next section, we will explore how Helm can handle the creation of Kubernetes custom
resources (CRs).

Creating CRDs
While Helm is often used to create traditional Kubernetes resources, it can also be used to create CRDs
and CRs. CRDs are used to define resources that are not native to the Kubernetes API. You may want
to use this functionality to augment the abilities that Kubernetes provides. CRs are resources that
implement the CRD’s specification. As a result, it’s important to ensure that a CRD is always created
before the CRs that implement it.

Helm is able to ensure CRDs are created and registered to Kubernetes before CRs are included in a
Helm chart when CRDs are included in the chart’s crds/ folder. All CRDs defined under this folder
are created before those in templates/.

An example crds/ folder is shown here:

crds/

 my-custom-resource-crd.yaml

https://github.com/bitnami/charts/tree/master/bitnami/common

Understanding Helm Templates156

The my-custom-resource-crd.yaml file may have the following contents:

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

 name: my-custom-resources.learnhelm.io

spec:

 group: learnhelm.io

 names:

 kind: MyCustomResource

 listKind: MyCustomResourceList

 plural: MyCustomResources

 singular: MyCustomResource

 scope: Namespaced

 version: v1

Then, the templates/ directory can contain an instance of the MyCustomResource resource
(that is, the CR), as illustrated here:

templates/

 my-custom-resource.yaml

There are a few important caveats to note when creating CRDs with Helm. First, CRDs cannot be
templated, so they are created exactly as defined under the CRDs folder. Second, CRDs cannot be
deleted with Helm, and as a result, they also cannot be upgraded or rolled back. Third, creating CRDs
requires cluster-admin privileges within the Kubernetes cluster. Note that these caveats apply
to CRDs, not CRs. Since CRs are created in the templates/ folder, they are treated by Helm like
regular Kubernetes resource templates. CRs also typically do not require elevated permissions to the
level of cluster-admin, so they can typically be installed by normal users.

Throughout this chapter, we have discussed using templates to render Kubernetes resources with Helm.
In the next section, we will discuss how advanced Helm chart users can further process Kubernetes
resources while running an installation.

Post rendering
When developing Helm charts, you should carefully consider each of the different values that need
to be included in your chart. For example, if you know users may need to change the Service type
within Service templates, you should expose a value to do so to keep your chart flexible. The same
idea holds true for image names, resources, health checks, and other settings users would need to
configure based on your use case.

Post rendering 157

Sometimes, however, users will still require additional flexibility that is not provided by a Helm chart.
This is where post rendering comes into play. Post rendering is an advanced feature of Helm that allows
users to perform further modifications to rendered chart templates when they install your chart. It is
often seen as a last resort if they require modifications that your Helm chart does not allow.

Post rendering is applied by adding the --post-renderer flag to the install, upgrade, or
template commands. Here is an example:

$ helm install <release-name> <path-to-chart> --post-renderer
<path-to-executable>

The <path-to-executable> parameter is an executable file that invokes the post-renderer.
The executable could be anything from a Go program to a shell script invoking another tool, such as
Kustomize. Kustomize is a tool used for patching YAML files, so it is often used for post rendering.

We won’t dive deep into Kustomize because it is out of scope for this book. However, we have included
an example of using Kustomize as a post-renderer in the Git repository at chapter6/examples/
post-renderer-example that can be invoked as follows, assuming that the kustomize
command-line tool is available on the local machine:

$ cd chapter6/examples/post-renderer-example/post-render

$ helm template nginx ../nginx --post-renderer ./hook.sh

The hook.sh file invokes Kustomize, which patches the deployment and service YAML resources with
custom environment variables and the NodePort service type, as defined in the kustomization.
yaml file.

In this section, we discussed post rendering. One note before we depart from this topic is that post
rendering should not be considered part of normal Helm usage. As a chart developer, you should
ensure that your chart is flexible enough for users to leverage your chart as-is out of the box. As a
chart user, you should try to avoid using post renders unless absolutely necessary. This is because you
need to remember to use the --post-renderer flag on each Helm upgrade, or the patch will
be inadvertently omitted. Post-renderers also require additional effort from the user to maintain,
as there may be tooling or other prerequisites needed.

Throughout this chapter, we have covered each of the key components of Helm templates. Next, we
will tie this all in by returning to our Guestbook chart. We will make small updates to the scaffolded
values.yaml file and the deployment.yaml template, and we will deploy our Guestbook
Helm chart.

Understanding Helm Templates158

Updating and deploying the Guestbook chart
In order to successfully deploy our Guestbook application, we need to add values to configure the
following details:

• Configure the Redis service names and disable Redis authentication

• Create environment variables for defining the names of the Redis leader and follower

We will begin by first handling Redis values.

Updating Redis values

In Chapter 5, Helm Dependency Management, we created a Redis dependency for creating a backend.
Now, we will add a couple of values to our values.yaml file to complete the configuration.

The values that we need to add are in the Git repository at https://github.com/
PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/
chapter6/guestbook/values.yaml#L5-L8 and are shown in the following snippet:

redis:

 fullnameOverride: redis

 auth:

 enabled: false

The redis.fullnameOverride value is used to ensure that deployed Redis instances are prefixed
with redis. This will help ensure the Guestbook application is talking to consistently named instances.

Setting the redis.auth.enabled value to false will disable Redis authentication. This is
necessary because the Guestbook frontend is not configured to authenticate with Redis.

That’s all the changes needed for Redis. Let’s update the Guestbook values and templates next.

Updating Guestbook’s deployment template and values.yaml file

The helm create command we used in Chapter 4, Scaffolding a New Helm Chart, did an excellent
job of giving us almost all of the templating features we need for this application, but there is one gap
that we need to fill in order to deploy Guestbook. We need to be able to set environment variables in
the Guestbook deployment in order to tell the frontend how to connect to Redis.

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/values.yaml#L5-L8
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/values.yaml#L5-L8
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/values.yaml#L5-L8

Updating and deploying the Guestbook chart 159

If we observe the Guestbook source code at https://github.com/GoogleCloudPlatform/
kubernetes-engine-samples/blob/main/guestbook/php-redis/guestbook.
php, we can see three different environment variables that need to be set, as follows:

• GET_HOSTS_FROM: Informs Guestbook whether or not it should retrieve the Redis hostnames
from the environment. We will set this to env so that hostnames are retrieved from the two
environment variables defined next.

• REDIS_LEADER_SERVICE_HOST: Provides the hostname of the Redis leader. Because the
Redis dependency we are using specifies the leader as redis-master, we will set this value
to redis-master.

• REDIS_FOLLOWER_SERVICE_HOST: Provides the hostname of the Redis follower. The
Redis dependency we are using specifies the follower as redis-replicas, so we will set
this value to redis-replicas.

Since the scaffolded deployment.yaml template did not allow for environment variables to
be created, we need to write this logic into the template ourselves. We can do this by adding the
lines located at https://github.com/PacktPublishing/Managing-Kubernetes-
Resources-using-Helm/blob/main/chapter6/guestbook/templates/deployment.
yaml#L50-L51, which are also shown here:

env:

 {{- toYaml .Values.env | nindent 12 }}

Here, we added a new env object. Underneath, we are using the toYaml function to format the env
value (which we will add shortly) as a YAML object. Then, we are using a pipeline and the nindent
function to form a new line and indent by 12 spaces.

Next, we need to add the env object with the associated content to our values.yaml file. An
example of this is located at https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/values.
yaml#L10-L16 and is also displayed here:

env:

 - name: GET_HOSTS_FROM

 value: env

 - name: REDIS_LEADER_SERVICE_HOST

 value: redis-master

 - name: REDIS_FOLLOWER_SERVICE_HOST

 value: redis-replicas

With the Guestbook chart’s values and template updated, let’s move on to the next section.

https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/main/guestbook/php-redis/guestbook.php
https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/main/guestbook/php-redis/guestbook.php
https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/blob/main/guestbook/php-redis/guestbook.php
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/templates/deployment.yaml#L50-L51
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/templates/deployment.yaml#L50-L51
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/templates/deployment.yaml#L50-L51
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/values.yaml#L10-L16
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/values.yaml#L10-L16
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter6/guestbook/values.yaml#L10-L16

Understanding Helm Templates160

Deploying the Guestbook chart

Now, it’s time to deploy a fully functional Guestbook instance with our Helm chart! First, start your
minikube environment and create a new namespace for this chapter, as shown here. If you already
started and created the chapter6 name at the beginning of this chapter, you can skip the next
two commands:

$ minikube start

$ kubectl create namespace chapter6

Then, use the helm install command to deploy the Guestbook instance, as illustrated here. You
should also watch the pods in the namespace for the Redis pods to become ready:

$ helm install guestbook chapter6/guestbook -n chapter6

$ kubectl get pods –n chapter6 –w

Once the Redis instances are ready, hit Ctrl+C to stop watching resources and then use the kubectl
port-forward command to expose your Guestbook frontend to localhost on port 8080:

$ kubectl port-forward svc/guestbook 8080:80 -n chapter6

Once the Guestbook service is exposed, you can navigate to the http://localhost:8080
Uniform Resource Locator (URL) in your browser. The Guestbook frontend should appear. Try
entering a message, such as Hello world!, and a message should appear under the blue Submit button,
as illustrated here:

Figure 6.2 – The Guestbook frontend after the Hello world! message has been submitted

Summary 161

If you are able to load the page in a browser and enter a message, then congratulations! You have
successfully built and deployed your first Helm chart! However, as with any software product, you
can always continue to make improvements. We will enhance this chart in the next chapter by adding
upgrade and rollback hooks for performing backup and restore of the Redis database.

For now, when you are done working, feel free to clean up your environment and stop your minikube
instance, as follows:

$ kubectl delete ns chapter6

$ minikube stop

This brings us to the end of the section.

Summary
Templates represent the core of Helm’s functionality. They allow you to create a variety of different
Kubernetes resource configurations by enabling dynamic YAML generation. Helm’s template engine,
based on Go templates, contains several built-in objects upon which chart developers can build charts,
such as the .Values and .Release objects. Templates also provide many different functions to
provide robust formatting and manipulation, along with control structures for enabling conditional
logic and loops. Besides rendering Kubernetes resources, templates can also be used to abstract
boilerplate by using named templates and library charts.

By incorporating the capabilities provided by templates, we were able to make small modifications
to the Guestbook chart at the end of the chapter by enhancing the content of the values and the
deployment.yaml chart template, which resulted in the ability to deploy the Guestbook application
successfully. In the next chapter, we will continue to explore templates and enhance our Helm chart
by learning about and leveraging lifecycle hooks.

Further reading
To learn more about the basics behind creating Helm charts, consult the Chart Template Developer’s Guide
page on the Helm documentation at https://helm.sh/docs/chart_template_guide/.

https://helm.sh/docs/chart_template_guide/

Understanding Helm Templates162

Questions
See if you can answer the following questions:

1. Which Helm templating construct can you take advantage of to generate repeating YAML
portions?

2. What is the purpose of the with action?

3. What are the different built-in objects in Helm templates?

4. How does a Kubernetes resource template differ from a named template?

5. How does an application chart differ from a library chart?

6. What can a chart developer do to perform input validation?

7. What are some examples of different functions commonly used in Helm templates?

8. What is the difference between a template variable and a value?

7
Helm Lifecycle Hooks

A Helm release undergoes several different phases during its lifetime. The first phase, install, occurs
when the Helm chart is first installed. The second phase, upgrade, occurs when the Helm release is
updated by either updating values or the Helm chart itself. At a later point, a Helm user may need to
execute the rollback phase, which reverts the Helm release to an earlier state. Finally, if a user needs
to delete the Helm release and its associated resources from the Kubernetes cluster, users must execute
the uninstall phase.

Each phase is powerful on its own, but to provide additional capabilities around the release lifecycle,
Helm features a hooks mechanism that allows custom actions to be undertaken at different points
within a release cycle. For example, you may use hooks to do the following:

• Perform operations on a database, such as back up after upgrading or restoring a chart from a
previous snapshot during a rollback.

• Fetch secrets from a secrets management engine after installing a chart.

• Clean up external assets after uninstalling a chart.

In this chapter, we will explore Helm hooks and understand how they can be used to enhance the
capabilities of a Helm chart. Then, we will implement hooks in our Guestbook Helm chart to back up
and restore the Redis database when the Helm release is upgraded and rolled back.

In this chapter, we will cover the following topics:

• The basics of a Helm hook

• Hook life cycle

• Hook cleanup

• Writing hooks in the Guestbook Helm chart

• Cleaning up

Helm Lifecycle Hooks164

Technical requirements
For this chapter, you will need the following tools:

• minikube

• kubectl

• Helm

• Git

We will use minikube to explore several examples throughout this chapter, so feel free to start your
minikube environment using the following command:

$ minikube start

Once minikube has started, create a new namespace for this chapter:

$ kubectl create namespace chapter7

If you have not already cloned the example git repository in previous chapters, clone the repository
by running the following command:

$ git clone https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

Next, let’s understand the basics of a Helm hook and explore an example of running one.

The basics of a Helm hook
A hook executes as a one-time action at a designated point in time during the life span of a release.
A hook is implemented as a Kubernetes resource and, more specifically, within a container. While
the majority of workloads within Kubernetes are designed to be long-living processes, such as an
application serving API requests, hooks are made up of a single task or set of tasks that return 0 to
indicate success or non-0 to indicate a failure.

The options that are typically used in a Kubernetes environment for creating short-lived tasks are a
bare pod or a job. A bare pod is a pod that runs until completion and then terminates but will not be
rescheduled if the underlying node fails. A bare pod differentiates from a standard pod by toggling
the restartPolicy property. By default, this field is configured as Always, meaning that the
pod will be restarted if it completes (either due to success or failure). Even though there are use cases
for running bare pods, it is preferred to run lifecycle hooks as jobs, which has advantages over bare
pods, including that you can reschedule the hook if the node fails or becomes unavailable.

Since hooks are simply defined as Kubernetes resources, they are created like other Helm templates
and are placed in the templates/ folder. However, hooks are different in that they are always

The basics of a Helm hook 165

annotated with the helm.sh/hook annotation. Hooks use this annotation to ensure that they are
not rendered in the same fashion as the rest of the resources during standard processing. Instead,
they are rendered and applied based on the value specified within the helm.sh/hook annotation,
which determines when it should be executed within Kubernetes as part of the Helm release lifecycle.

The following is an example of a hook. This example can also be found in this book’s GitHub repository
at chapter7/examples/hook-example/templates/hooks/job.yaml:

apiVersion: batch/v1

kind: Job

metadata:

 name: {{ .Release.Name }}-hook

 annotations:

 "helm.sh/hook": post-install

spec:

 template:

 metadata:

 name: {{ .Release.Name }}-hook

 spec:

 restartPolicy: Never

 containers:

 - name: {{ .Release.Name }}-hook

 command: ["/bin/sh", "-c"]

 args:

 - echo "Hook executed at $(date)"

 image: alpine

This trivial example prints out the current date and time after the chart is installed. A use case for this
type of hook is to integrate with an auditing system that tracks when applications are installed in a
Kubernetes environment. Note that although the hook is saved under the template/hooks/ folder,
it could have also been saved directly under templates/. The additional hooks/ subdirectory
was created only to separate application-specific templates from hook templates.

To demonstrate the behavior of Helm hooks, let’s see this hook in action by installing the Helm chart
located within chapter7/examples/hook-example:

1. First, install the hook-example Helm chart:

$ helm install my-app chapter7/examples/hook-example –n
chapter7

Helm Lifecycle Hooks166

Note that this command may hang for longer than the Helm commands that have been
invoked in the past. This is because Helm is waiting for the hook to be created and completed
before returning.

Next, view the pods in the namespace. You will see two pods. The first is the application, while
the second is the hook:

$ kubectl get pods –n chapter7

NAME READY STATUS

my-app-hook-example-6747bfbb6-dd9xz 1/1 Running

my-app-hook-p8rrd 0/1 Completed

2. The pod with a status of Completed is the hook. Let’s check the pod logs to view the output
produced by the hook:

$ kubectl logs jobs/my-app-hook –n chapter7

Hook executed at Mon Jan 17 21:40:38 UTC 2022

As you can see, the hook logged the time just after the Helm chart was installed.

3. Uninstall the release and check the remaining pods. You will see that the hook remains in
the namespace:

$ helm uninstall my-app –n chapter7

$ kubectl get pods –n chapter7

NAME READY STATUS

my-app-hook-p8rrd 0/1 Completed

Once hooks have been created and executed, they become unmanaged. (This happens unless
the helm.sh/hook-delete-policy annotation is applied. We will cover this later in
this chapter in the Advanced hook concepts section.) As a result, we are responsible for cleaning
up the hook ourselves. Let’s do this now by deleting the job:

$ kubectl delete job my-app-hook –n chapter7

At this point, all the resources associated with the installation of the chart have been cleaned up.

Since hooks may contain long-running tasks, the release may time out. By default, Helm sets a timeout
value of 5 minutes to complete all the steps related to a release. The timeout related to a release can also
be controlled using the --timeout flag when performing a helm install or helm upgrade
when an alternate value is desired. Modifying this value may be needed if a hook is long-running and
may extend past the default timeout value.

Now that we have a basic understanding of Helm hooks, let’s take a look at the different hook life
cycle options.

Helm hook life cycle 167

Helm hook life cycle
As you saw regarding the job hook in the previous section, the point at which the job was executed
was based on the value of the helm.sh/hook annotation. Since post-install was specified,
the job was executed once all the associated resources were created as part of the release. The
post-install option represents one of the points during the life span of a Helm chart where
a hook can be executed.

The following table describes the available options for the helm.sh/hook annotation. A description
of each hook can be found in the official Helm documentation, which can be found at https://
helm.sh/docs/topics/charts_hooks/#the-available-hooks:

Annotation Value Description
pre-install Executes after templates are rendered but before any resources are created

in Kubernetes.
post-install Executes after all resources are created in Kubernetes.
pre-delete Executes due to a deletion request before any resources are deleted from

Kubernetes.
post-delete Executes due to a deletion request after all the release’s resources have been

deleted.
pre-upgrade Executes due to an upgrade request after templates are rendered but before

any resources are updated.
post-upgrade Executes due to an upgrade after all the resources have been upgraded.
pre-rollback Executes due to a rollback request after templates are rendered but before

any resources are rolled back.
post-rollback Executes due to a rollback request after all resources have been modified.
test Executes when the helm test subcommand is invoked. This will be

discussed in more detail in Chapter 9, Testing Helm Charts.

Sometimes, you may have multiple resources with the same helm.sh/hook setting. For example, you
may have a ConfigMap resource and a job resource both marked as hooks to run in the same phase,
such as pre-upgrade. In this case, you can define the order in which these resources are created by
using the helm.sh/weight annotation. This annotation is used to assign weighted values to each
of the hook resources that are marked to execute in the same phase. Weights are sorted in ascending
order, so the resource marked with the lowest weight is executed first. If weights are not applied but
the Helm chart contains multiple hooks that execute in the same phase, then Helm infers the order
by sorting the templates by resource kind and name in alphabetical order.

https://helm.sh/docs/topics/charts_hooks/#the-available-hooks
https://helm.sh/docs/topics/charts_hooks/#the-available-hooks

Helm Lifecycle Hooks168

The following example illustrates setting the annotation value for a hook’s weight to 0:

annotations:

 "helm.sh/hook": pre-upgrade

 "helm.sh/weight": "0"

This hook will be executed during the chart upgrade process and after the necessary resources have
been rendered, but before them being applied to the Kubernetes cluster.

Apart from being able to position hooks in a single lifecycle phase, we can use the helm.sh/hook
annotation to specify multiple phases. This can be done by specifying a comma-separated list of
lifecycle phases. The following example defines a hook that should be installed both before and after
a chart has been installed:

annotations:

 "helm.sh/hook": pre-install,post-install

In this example, where both the pre-install and post-install options are selected, the
helm install command would be executed as follows:

1. The user initiates the installation of a Helm chart (by running, for example, helm install
wordpress bitnami/wordpress).

2. Any CRDs in the crds/ folder, if present, are installed in the Kubernetes environment.

3. The chart templates are verified and the resources are rendered.

4. The pre-install hooks are ordered by weight, then rendered and applied to the Kubernetes
environment.

5. Helm waits until the hook resources have been created and, for pods and jobs, are reported to
have been Completed or in an Error state.

6. The template resources are rendered and applied to the Kubernetes environment.

7. The post-install hooks are ordered by weight and then executed.

8. Helm waits until the post-install hooks have finished running.

9. The results of the helm install command are returned.

In this section, we reviewed the options for running hooks within different lifecycle phases. Next, we
will discuss the cleanup process for hook-related resources.

Helm hook cleanup 169

Helm hook cleanup
In the Helm hook basics section, we noted that Helm hooks, by default, are not removed with the rest
of the chart’s resources when the helm uninstall command is invoked. Instead, we must clean
up the resources manually. Luckily, several strategies can be employed to automatically remove hooks
during a release’s life cycle. These options include configuring a deletion policy and setting a time to
live (TTL) on a job.

The helm.sh/hook-delete-policy annotation is used to set a deletion policy on hook resources.
This annotation determines when Helm should remove the resources from Kubernetes. The following
table highlights the available options. You can find descriptions for these in the Helm documentation
at https://helm.sh/docs/topics/charts_hooks/#hook-deletion-policies:

Annotation Value Description

before-hook-creation
Deletes the previous resources before the hook is launched
(this is the default)

hook-succeeded Deletes the resources after the hook is successfully executed
hook-failed Deletes the resources if the hook failed during execution

If the helm.sh/hook-delete-policy annotation is not provided, then the before-hook-
creation policy is applied by default. This means that if any existing hook resources are deleted
(if they are present), they are recreated when the hook is executed. This is useful, especially for jobs,
as conflicts can occur if jobs are recreated with the same name. By making use of the before-
hook-create annotation, we can avoid this situation.

There are also situations where the other types of hook cleanup policies could be used. For example,
you may want to apply the hook-succeeded value, which cleans up the hook if it is successfully
executed, to avoid retaining excess resources. However, if an error does occur during the execution
of the hook, the resources will remain to help with any troubleshooting to determine the cause of the
error. The hook-failed cleanup type, as you can probably guess, removes the associated hook
resources from the hook upon failure. This can be a useful option if you don’t wish to retain the assets
associated with a hook, regardless of whether it completes successfully or fails. Similar to the helm.
sh/hook annotation, multiple deletion policies can be applied by setting the helm.sh/hook-
delete-policy annotation with a comma-separated string:

annotations:

 "helm.sh/hook-delete-policy": before-hook-creation,hook-
succeeded

https://helm.sh/docs/topics/charts_hooks/#hook-deletion-policies

Helm Lifecycle Hooks170

The Helm delete policy represents the most encompassing way to clean up after hooks, but you can
also leverage a job’s ttlSecondsAfterFinished configuration to define a TTL in which jobs
should be retained before they are automatically deleted. This will limit the amount of time that the
job is retained in the namespace after it is completed. The following code shows an example of using
the ttlSecondsAfterFinished job setting:

apiVersion: batch/v1

kind: Job

metadata:

 name: {{ .Release.Name }}-hook

 annotations:

 "helm.sh/hook": post-install

spec:

 ttlSecondsAfterFinished: 60

 <omitted>

In this example, the job will be removed 60 seconds after it completes or fails.

In this section, we discussed ways to automatically clean up resources and how regular chart
resources (that is, resources that are not associated with hooks) are automatically removed when
helm uninstall is invoked. There may be some situations, however, when you want specific
chart resources to follow the behavior of hooks and remain installed in the cluster, even when the
helm uninstall command is invoked. A common use case for this is when your chart has
created persistent storage via a standalone PersistentVolumeClaim resource (as opposed to a
PersistentVolumeClaim resource managed by a StatefulSet object). You may want this
storage to be retained beyond the release’s normal life cycle. You can enable this behavior by applying
the helm.sh/resource-policy annotation to the resource, as shown in the following snippet:

annotations:

 "helm.sh/resource-policy": keep

Note that when using this annotation on non-hook resources, naming conflicts may occur if the
chart is reinstalled.

So far, we have covered Helm hooks and the various options that are associated with them. Now, let’s
look at the power that hooks bring by writing a hook in our Guestbook Helm chart.

Writing hooks in the Guestbook Helm chart
As you may recall, the Guestbook Helm chart uses a Redis database to persist messages created by the
user. Using Helm hooks, we can create a process that performs simple backup and restore processes

Writing hooks in the Guestbook Helm chart 171

of the Redis database at various points of the chart’s life cycle. Let’s take a look at the two hooks that
we will create in this section:

• The first hook will occur in the pre-upgrade lifecycle phase. This phase takes place
immediately after the helm-upgrade command is run, but before any Kubernetes resources
have been modified. This hook will be used to take a data snapshot of the Redis database before
the upgrade is performed, ensuring that the database is backed up in case any errors occur
during the upgrade.

• The second hook will occur in the pre-rollback lifecycle phase. This phase takes place immediately
after the helm-rollback command is run, but before any Kubernetes resources are reverted.
This hook will restore the Redis database to a previously taken snapshot and ensure that the
Kubernetes resources are reverted so that they match the configuration at the point in time
when the snapshot was taken.

By the end of this section, you will be more familiar with lifecycle hooks and some of the powerful
capabilities that can be performed with them. Be sure to keep in mind that the hooks that will be
created in this section are simple and are designed for demonstration purposes only. It is not advised
to use these hooks as-is in applications that may use Redis.

Let’s begin by creating the pre-upgrade hook.

Creating the pre-upgrade hook to take a data snapshot

In Redis, data snapshots are contained inside a file called dump.rdb. We can back this file up by
creating a hook that creates a new PVC in the Kubernetes namespace to store database backup
contents. The hook can then create a Job resource that copies the dump.rdb file to the newly created
PersistentVolumeClaim.

While the helm create command generates some powerful resource templates that allow the
initial guestbook chart to be created quickly, it does not scaffold out any hooks that can be used
for this task. As a result, you can create the pre-upgrade hook from scratch by following these steps:

1. First, you should create a new folder that will contain the hook templates. While this is not a
technical requirement, it does help you organize the structure of your chart so that your hook
templates are separate from the regular chart templates. It also allows you to group the hook
templates by function (backup versus restore).

Create a new folder called templates/backup in your guestbook Helm chart,
as follows:

$ mkdir -p guestbook/templates/backup

Helm Lifecycle Hooks172

2. Next, you should create the two template files required to perform the backup. The first template
that’s required is a PersistentVolumeClaim template since this will be used to contain
the backup dump.rdb file. The second template will be a job template that will be used to
perform the copy.

Create two empty template files to serve as placeholders, as follows:

$ touch guestbook/templates/backup/persistentvolumeclaim.
yaml

$ touch guestbook/templates/backup/job.yaml

You can double-check your work by referencing this book’s GitHub repository. The file structure
should reflect the example at https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm/tree/main/chapter7/guestbook/
templates/backup.

3. Now, let’s fill in the contents of the persistentvolumeclaim.yaml template. Since the
template’s content is relatively lengthy, we’ll copy each template from the GitHub repository
and then take a deep dive into how they were created.

4. Copy the contents of the file shown in the following screenshot to your backup/
persistentvolumeclaim.yaml file. You can find this file at https://github.com/
PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/
main/chapter7/guestbook/templates/backup/persistentvolumeclaim.
yaml:

Figure 7.1 – The backup/persistentvolumeclaim.yaml template

 � Lines 1 and 17 of the backup/persistentvolumeclaim.yaml file consist of an if
action. Since this action encapsulates the whole file, it indicates that this resource will only
be included if the redis.master.persistence.enabled value is set to true.
This value defaults to true in the Redis chart and can be observed using the helm show
values command.

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter7/guestbook/templates/backup
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter7/guestbook/templates/backup
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter7/guestbook/templates/backup

Writing hooks in the Guestbook Helm chart 173

 � Line 5 determines the name of the new backup PVC (PersistentVolumeClaim). This
name is based on the release name, Redis name, and the revision number from which the
backup was taken. Notice the usage of the sub function, which aids in calculating the revision
number. This is used to subtract 1 from the revision number since the helm upgrade
command increments this value before the templates are rendered.

 � Line 9 creates an annotation to declare this resource as a pre-upgrade hook. Finally,
line 10 creates a helm.sh/hook-weight annotation to determine the order in which
this resource should be created compared to other pre-upgrade hooks. Weights are run in
ascending order, so this resource will be created before other pre-upgrade resources.

5. Now that the persistentvolumeclaim.yaml file has been created, we must create
the final pre-upgrade template – that is, job.yaml. Copy the following contents to your
previously created backup/job.yaml file. This can also be copied from this book’s GitHub
repository at https://github.com/PacktPublishing/Managing-Kubernetes-
Resources-using-Helm/blob/main/chapter7/guestbook/templates/
backup/job.yaml:

Figure 7.2 – The backup/job.yaml template

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/backup/job.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/backup/job.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/backup/job.yaml

Helm Lifecycle Hooks174

 � Once again, line 9 defines this template as a pre-upgrade hook, while line 10 sets the hook weight
to 1, indicating that this resource will be created after the persistentvolumeclaim.
yaml template.

 � Line 11 sets the helm.sh/hook-delete-policy annotation to specify when this
job should be deleted. Here, we have applied two different policies. The first is before-
hook-creation, which indicates it will be removed during subsequent helm upgrade
commands if the job already exists in the namespace, allowing a fresh job to be created in its
place. The second policy is hook-succeeded, which deletes the job if it finishes successfully.
Another policy we could have added is hook-failed, which would delete the job if it
failed. However, given that we want to keep failures around for the sake of troubleshooting,
we haven’t implemented this policy.

 � Lines 19 through 22 contain the commands for backing up the Redis database. First, redis-
cli is used to save the current state. Then, the dump.rdb file is copied from the master to
the backup PVC created in the backup/persistentvolumeclaim.yaml template.

 � Finally, lines 29 through 35 define the volumes that reference the master and backup PVCs.

In this section, we created two pre-upgrade hooks – one to create a backup PVC and another to
copy the Redis dump.rdb file to the PVC. In the next section, we will create the pre-rollback
hooks for restoring Redis to a previously taken backup. Afterward, we will deploy the guestbook
chart to see these hooks in action.

Creating the pre-rollback hook to restore the database

Whereas the pre-upgrade hook was written to copy the dump.rdb file from the Redis master
PVC to the backup PVC, a pre-rollback hook can be written to do the opposite – that is, restore
the database to a previous snapshot.

This hook can be implemented by copying the dump.rdb file from the backup PVC to the master
Redis instance. Then, a rollout of Redis must be performed to create new Redis replica pods. When
the replicas reconnect to the master, they will load the backup dump.rdb file for the Guestbook
frontend to read.

Follow these steps to create the pre-rollback hook:

1. Create the templates/restore folder, which will be used to contain the pre-rollback
hook:

$ mkdir guestbook/templates/restore

Writing hooks in the Guestbook Helm chart 175

2. Next, scaffold the templates that are required for this hook. We need to create a
serviceaccount.yaml template and a rolebinding.yaml template to create a
ServiceAccount with permission to redeploy the Redis replicas. Then, we need a job.yaml
template to perform the restore task:

$ touch guestbook/templates/restore/serviceaccount.yaml

$ touch guestbook/templates/restore/rolebinding.yaml

$ touch guestbook/templates/restore/job.yaml

You can check that you have created the correct structure by referencing this book’s GitHub
repository at https://github.com/PacktPublishing/Managing-Kubernetes-
Resources-using-Helm/tree/main/chapter7/guestbook/templates/
restore.

3. Now, let’s create the first pre-rollback hook, serviceaccount.yaml. Copy the
contents shown in the following screenshot into restore/serviceaccount.yaml. This
code can also be found within this book’s GitHub repository at https://github.com/
PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/
main/chapter7/guestbook/templates/restore/serviceaccount.yaml:

Figure 7.3 – The restore/serviceaccount.yaml template

Line 8 defines this template as a pre-rollback hook. Since the hook’s weight is 0 (on line
10), this will be created before the other pre-rollback templates.

4. The previous template created a ServiceAccount that we will use later in the job, but now,
we need to give the ServiceAccount permission to roll out new Redis replica pods when it
communicates with the Kubernetes API. To keep it simple for this example, we will give the
ServiceAccount edit permission in the chapter7 namespace.

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter7/guestbook/templates/restore
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter7/guestbook/templates/restore
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter7/guestbook/templates/restore
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/restore/serviceaccount.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/restore/serviceaccount.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/restore/serviceaccount.yaml

Helm Lifecycle Hooks176

Copy the contents shown in the following screenshot into the restore/rolebinding.yaml
template. This code can also be found in this book’s GitHub repository at https://github.
com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/
blob/main/chapter7/guestbook/templates/restore/rolebinding.yaml:

Figure 7.4 – The restore/rolebinding.yaml template

Lines 11 through 14 reference the edit ClusterRole that we want to grant, while lines 15
through 19 target our ServiceAccount in the namespace we are going to release to (which will
be the chapter7 namespace).

5. Finally, we need to add content to the job.yaml file. Copy the following content to your
restore/job.yaml template. This content can also be found at https://github.
com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/
blob/main/chapter7/guestbook/templates/restore/job.yaml:

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/restore/rolebinding.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/restore/rolebinding.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/restore/rolebinding.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/restore/job.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/restore/job.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter7/guestbook/templates/restore/job.yaml

Writing hooks in the Guestbook Helm chart 177

Figure 7.5 – The restore/job.yaml hook

This job.yaml template is where the core pre-rollback logic takes place. Lines 18 through
29 define an initContainer that copies the backup dump.rdb file to the Redis master
and performs a reload, reverting the state of the master, as represented in the backup dump.
rdb file. An initContainer is a container that runs until completion before any of the
containers listed under the containers section are run. We created this first to ensure that
the master is reverted before we move on to the next step.

Lines 30 through 37 represent the next step of the rollback. Here, we restart the Redis replica’s
StatefulSet. When the replicas reconnect to the master, they will serve the data represented
by the backup dump.rdb file.

Helm Lifecycle Hooks178

With the pre-upgrade and pre-rollback hooks created, let’s see them in action within the
minikube environment.

Executing the life cycle hooks

To run the lifecycle hooks you created, you must install your chart by running the helm install
command:

$ helm install guestbook chapter7/guestbook -n chapter7
--dependency-update

When each pod reports the 1/1 Ready state, access your Guestbook application by running a
port-forward command, as follows:

$ kubectl port-forward svc/guestbook 8080:80 –n chapter7

Next, access the Guestbook frontend at http://localhost:8080, write a message, and click
Submit. An example message can be seen in the following screenshot:

Figure 7.6 – Entering a message in the Guestbook frontend

Once a message has been entered, run the helm upgrade command to trigger the pre-upgrade
hook. The helm upgrade command will hang briefly until the backup has finished:

$ helm upgrade guestbook guestbook –n chapter7

When the command returns, you should find a new PVC that was created that contains the backup.
The PVC is called guestbook-redis-backup-1:

$ kubectl get pvc -n chapter7

NAME STATUS

redis-data-redis-master-0 Bound

redis-redis-backup-1 Bound

Writing hooks in the Guestbook Helm chart 179

Now that a backup has been completed, let’s add another message. We plan to roll back after this
message is entered. The following screenshot shows an example of the guestbook application after
both messages have been added:

Figure 7.7 – A second message entered in the Guestbook frontend

Now, let’s run the helm rollback command to revert to the first revision. This command will
hang briefly until the helm rollback command returns:

$ helm rollback guestbook 1 –n chapter7

When this command finishes, the Redis replicas should roll out. This rollout can be observed with
the following command:

$ kubectl get pods –n chapter7 –w

Once the new replicas have been rolled out, refresh your Guestbook frontend in your browser. You
will see the message you added after the upgrade disappears, as shown in the following screenshot:

Figure 7.8 – The Guestbook frontend after the pre-rollback phase

Hopefully, this example provided you with a greater understanding of Helm hooks. We want to
emphasize again that this was just a simple example and is not a production-ready solution.

Helm Lifecycle Hooks180

Note that while this chapter focused on developing and running lifecycle hooks, hooks can be skipped
by adding the --no-hooks flag to the helm install, helm upgrade, helm rollback,
and helm delete commands. Adding this flag will cause Helm to skip the hooks associated with
the lifecycle phase that was executed.

Let’s wrap things up by cleaning up the minikube environment.

Cleaning up
First, delete the chapter7 namespace to delete the guestbook release and associated PVCs:

$ kubectl delete ns chapter7

Next, stop the minikube environment:

$ minikube stop

With that, everything has been cleaned up.

Summary
Lifecycle hooks open the door to additional capabilities by allowing chart developers to install resources
at different lifecycle phases. Hooks commonly include job resources to execute the actions that take
place within a hook, but they also often include other resources, such as ServiceAccounts, policies
including RoleBindings, and PersistentVolumeClaims. At the end of this chapter, we added
lifecycle hooks to our Guestbook chart and ran through a backup and restore of the Redis database.

In the next chapter, we will discuss publishing a Helm chart to a chart repository.

Further reading 181

Further reading
To learn more about lifecycle hooks, visit the Helm documentation at https://helm.sh/docs/
topics/charts_hooks/.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What are the nine different types of lifecycle hooks?

2. What annotation is used to define a hook?

3. What annotation is used to define the order in which a hook should be created?

4. What can a chart developer add to ensure that hooks are always deleted upon success?

5. How can a Helm user skip lifecycle hooks?

6. What Kubernetes resource is most often used to execute a lifecycle hook?

https://helm.sh/docs/topics/charts_hooks/
https://helm.sh/docs/topics/charts_hooks/

8
Publishing to a

Helm Chart Repository

Helm could not be regarded as the package manager for Kubernetes without the concept of a Helm
chart repository. Repositories are used to publish Helm charts to the community. In this chapter, we
will understand different methods of creating a Helm chart repository. Later, we will get hands-on
practice with different repository implementations by publishing our Guestbook Helm chart to an
HTTP-based repository and an OCI registry.

In this chapter, we will cover the following topics:

• Understanding Helm chart repositories

• Publishing to an HTTP repository

• Publishing to an OCI registry

Technical requirements
For this chapter, you will need a GitHub account. If you already have a GitHub account, you can log
in at https://github.com/login. Otherwise, you can create a new account at https://
github.com/join.

You should also clone the Packt Git repository locally:

$ git clone https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

To begin, let’s understand the basics of a Helm chart repository.

https://github.com/login
https://github.com/join
https://github.com/join

Publishing to a Helm Chart Repository184

Understanding Helm chart repositories
Helm chart repositories are used for publishing Helm charts and making them available to a wide
community of Helm users. This is conceptually similar to the repositories that are used in Linux
package management, such as RPM or Debian repositories, in which packages are installed using
tools such as dnf or apt-get. Public Helm chart repositories can be found at Artifact Hub
(https://artifacthub.io).

A Helm chart repository is created using one of two high-level implementations:

• An HTTP server

• An OCI registry

Using an HTTP server is the most common implementation for publishing charts since it has been in
supported the longest. To create a Helm chart repository using an HTTP server, you can use tools such as
Apache httpd, NGINX, Amazon S3, and GitHub Pages. ChartMuseum (https://github.com/
helm/chartmuseum) is another popular option as it provides an API for more advanced operations.
In the Publishing to an HTTP repository section, we will use GitHub Pages to create our repository.

A repository that’s been created using an HTTP server must consist of the following components:

• Helm charts, packaged as .tgz archives

• An index.yaml file, containing metadata about the charts contained in the repository

Basic chart repositories require maintainers to generate index.yaml files using the helm repo
index command, which we will explore later, but more advanced solutions such as ChartMuseum
can automatically generate the index.yaml file when new charts are uploaded to the repository.

Besides HTTP, the other type of repository a Helm chart maintainer can distribute charts to is an
Open Container Initiative (OCI) registry. OCI is an open governance structure for creating open
standards for container runtimes and formats. Artifacts is an OCI initiative that allows you to store
and serve additional content, such as Helm charts, within container registries aside from container
images. Since images and their registries are already a fundamental construct in both Kubernetes and
Helm, the ability to leverage the same registry to store both container images and Helm charts reduces
the amount of effort needed by Helm maintainers to publish charts. We will explore publishing Helm
charts using OCI registries in greater detail in the Publishing to an OCI registry section.

In the next section, we’ll publish our Guestbook Helm chart to GitHub Pages. Here, you will get an
understanding of how a basic Helm chart repository is created and interacted with.

Publishing to an HTTP repository
GitHub Pages is a feature within GitHub that allows you to serve static content from a repository. In this
section, we’ll create a new GitHub repository with Pages enabled to publish our Guestbook Helm chart.

https://artifacthub.io
https://github.com/helm/chartmuseum
https://github.com/helm/chartmuseum

Publishing to an HTTP repository 185

To follow the example in this section, you must have a GitHub account. Directions for creating a
GitHub account or logging into an existing one were provided in the Technical requirements section.

Once you are logged into GitHub, continue to the next section to create your repository.

Creating a GitHub Pages repository

Follow these steps to create a GitHub Pages repository:

1. Go to https://github.com/new and access the Create a new repository page.

2. Provide a name for your chart repository. We suggest Chart-Repository-Example.

3. Select the checkbox next to Initialize this repository with a README. This is required because
GitHub does not allow you to create a static site if it does not contain any content. You can leave
the rest of the settings at their default values. Note that to leverage GitHub Pages, you must
leave the privacy setting set to Public unless you have a paid GitHub Pro account.

Your Create a new repository page should now look as follows:

Figure 8.1 – Creating a new GitHub repository

https://github.com/new

Publishing to a Helm Chart Repository186

4. Click the Create repository button to create your repository.

Although your repository has been created, it is not ready to serve Helm charts until GitHub
Pages is enabled.

5. Click the Settings tab within your repository to access your repository settings. From there,
select the Pages tab from the left-hand column. Then, under Source, select the main option
from the drop-down list. Finally, click the Save button. This will instruct GitHub to create a
static site that serves the contents of your main branch.

At this point, your screen should look similar to the following:

Figure 8.2 – Finding GitHub Pages settings

Now that you have configured your GitHub repository, you should clone it to your local machine so
that you can add the Guestbook Helm chart to it later. Follow these steps to clone your repository:

1. Navigate to the root of your repository by selecting the Code tab at the top of the page.

2. Select the green Clone or download button. This will reveal the URI to your GitHub repository
(note that this is not the same as the URL for the static site). You can use the following screenshot
as a reference to find your repository URI:

Publishing to an HTTP repository 187

Figure 8.3 – Locating the git URI

3. Once you have acquired your repository’s URI, clone the repository to your local machine.
You may want to ensure you are in your home directory first before you clone to ensure you
do not accidentally clone to an existing git repo:

$ cd ~

$ git clone <repository URI>

Now that you have cloned the repository, you can publish your Guestbook chart.

Publishing the Guestbook chart

Publishing a Helm chart to an HTTP repository consists of a three-step process:

1. Packaging the Helm chart as a .tgz archive

2. Generating an index.yaml file

3. Uploading the .tgz archive and the index.yaml file to the server

Publishing to a Helm Chart Repository188

Helm provides several different commands to make the publishing process a simple task. We’ll walk
through these commands in this section.

First, you can use the helm package command to package your chart into a .tgz archive. We’ll
use the Guestbook chart located in the Packt Git repository at chapter8/guestbook as part of
this example:

$ helm dependency update chapter8/guestbook

$ helm package guestbook chapter8/guestbook

If these commands execute successfully, a file called guestbook-0.1.0.tgz will be created.

Note that we executed the helm dependency update command before running helm package.
This is because the Guestbook chart must have the dependencies downloaded first to be included in
the archive. To simplify this, we could have combined the previous two commands into a single step
by providing an additional flag to the helm package command:

$ helm package chapter8/guestbook --dependency-update

This would ensure that the dependencies are included in the final package.

Once your chart has been packaged, the resulting .tgz file should be copied to your local GitHub
Pages repository clone. This can be done by using the cp command:

$ cp guestbook-0.1.0.tgz <GitHub Pages repository clone>

When this file is copied, you can use the helm repo index command to generate the index.
yaml file. This command takes the location of your chart repository clone as an argument. Run the
following command to generate your index.yaml file:

$ helm repo index <GitHub Pages repository clone>

The command will succeed quietly, but you will see the new index.yaml file inside your GitHub
Pages clone. The contents of this file provide the Guestbook chart metadata and will look as follows:

apiVersion: v1

entries:

 guestbook:

 - apiVersion: v2

 appVersion: v5

 created: "2022-02-20T04:13:36.052015-05:00"

 dependencies:

 - condition: redis.enabled

 name: redis

Publishing to an HTTP repository 189

 repository: https://raw.githubusercontent.com/bitnami/
charts/archive-full-index/bitnami

 version: 15.5.x

 description: An application used for keeping a running
record of guests

 digest: 983dee22d05be37fb73cf6a06fa5a2b2c320c1678ad6a8
df3d198a403f467343

 name: guestbook

 type: application

 urls:

 - guestbook-0.1.0.tgz

 version: 0.1.0

generated: "2022-02-20T04:13:36.045492-05:00"

If additional charts were added to this repository, their metadata would be listed in this file as well.

Your Helm chart repository should now contain the .tgz archive and the index.yaml file, with
the contents listed similar to the output from the following command:

$ ls <GitHub Pages repository clone>

README.md guestbook-0.1.0.tgz index.yaml

To finish the publishing process, you should commit and push these files to GitHub using the following
commands:

$ cd <GitHub Pages repository clone>

$ git add --all

$ git commit –m "publishing the guestbook helm chart"

$ git push origin main

Once you have pushed to the remote repository, your Guestbook Helm chart will be served from
the GitHub Pages static site. We can verify this is working properly by adding our repository and
performing a search.

First, find your GitHub Pages site URL. This URL was displayed in the Settings tab and takes the form
of https://<github username>.github.io/Chart-Repository-Example/. Once
you have identified the URL, use it to add the chart repository:

$ helm repo add example <GitHub Pages Site URL>

Publishing to a Helm Chart Repository190

This command will allow Helm to interact with your repository. You can verify that your chart was
published successfully by searching for the Guestbook chart against your locally configured repos.
This can be done by running the following command:

$ helm search repo guestbook

You should find the example Guestbook chart that was returned in the search output.

Congratulations! You have published the Guestbook chart to your Helm chart repository. Note that
while we have published our chart to an unauthenticated repository in this chapter, we will explore
authentication and security in detail in Chapter 12, Helm Security Considerations.

In the next section, we will explore OCI registry support and publish our Guestbook chart to a
container registry.

Publishing to an OCI registry
Publishing a Helm chart to an OCI registry follows a similar workflow to the one you would follow when
working with a standard container image. Commands such as docker login, docker pull,
and docker push have analogous commands in Helm. These commands and their descriptions
can be seen in the following table:

Command Description
helm registry login Log in to a registry
helm registry logout Log out of a registry
helm push Push a packaged chart to a registry
helm pull Pull a chart from a registry

Table 8.1 – Helm commands for OCI management

Note that full support for OCI-based charts became available in version 3.8.0. Before this version,
it was included as an experimental feature and required an environment variable to be present to
activate the feature. If you are using a version older than 3.8.0, the HELM_EXPERIMENTAL_OCI=1
environment variable must be set, as shown here:

$ export HELM_EXPERIMENTAL_OCI=1

The helm pull command is just one example where OCI-based charts can be used interchangeably
with charts sourced from different locations (such as an HTTP repository or a local filesystem). Other
Helm commands that can be used in this manner include the following:

• helm show

• helm template

Publishing to an OCI registry 191

• helm install

• helm upgrade

OCI-based charts can be differentiated from other sources by specifying the OCI protocol (oci://)
as part of a chart’s location. For example, a chart sourced from a registry at localhost:5000/
helm-charts/mychart is referenced in Helm as oci://localhost:5000/helm-charts/
mychart.

It is also important to note that while OCI artifacts can be served within the same registry alongside
container images, not every registry fully supports the OCI artifact specification, so it cannot store
OCI-based helm charts. Consult the documentation of the registry distribution beforehand.

To demonstrate how to interact with OCI-based helm charts, we can use the Guestbook chart and
store it in an OCI registry. First, we must determine the registry where the chart should be stored.
Since we are not only using GitHub to store the raw source code for our charts as it also acts as our
Helm repository, the Container Registry provided as part of the GitHub packages offering can act as
an OCI registry for helm charts. OCI artifacts are fully supported by the container registry, which is
one less concern that we need to worry about.

To publish content to the container registry, a Personal Account Token (PAT) must be created. Follow
these steps to create a PAT with the necessary permissions to push and pull images:

1. Once logged into GitHub, at the top right corner of the page, select your profile picture and
click Settings from the dropdown.

2. Click Developer Settings and select Personal Account Token.

3. Click the Generate New Token button to initiate the token creation process.

4. Enter a unique name for the token, such as Learn Helm.

5. Select the date the token will expire.

6. Select the scopes (permissions) that will be granted to the token. The following scopes are
required for managing content within the container registry:

 � read:packages

 � write:packages

 � delete:packages

7. Click the Generate Token button to create the token.

Be sure to copy the generated token as it cannot be retrieved once you’ve navigated away from the page.

Before interacting with the container registry, it is important to note how content is organized within
the registry. While these details are specific to the GitHub service, these concepts can be applied to any
container registry. Content is stored in the ghcr.io/<OWNER>/<ARTIFACT> format. OWNER,
in this situation, represents the name of a user account or GitHub organization.

Publishing to a Helm Chart Repository192

The primary reason why these details are so important is that Helm imposes a strict naming convention
that is applied to OCI-based charts. Unlike publishing other artifacts to a container registry, where the
repository name and tag can be specified, the repository name and tag are determined automatically
based on the chart’s name and semantic version, as defined in the Chart.yaml file. For example,
a chart named mychart with version 0.1.0 would be stored in the GitHub container registry for a
user named jdoe at ghcr.io/jdoe/mychart:0.1.0.

Now that we understand how charts are organized within OCI registries, let’s push the chart we
created previously to the GitHub registry. The first step is to log in to the registry using the PAT that
we created previously using the helm registry login command.

The helm registry login command takes the following form:

$ helm registry login <registry>

To log in to the GitHub registry, execute the following command:

$ helm registry login ghcr.io

Enter your GitHub username and the PAT as the password when prompted. A Login Succeeded
response will be returned upon successful authentication. –-username, along with either the
--password or --password-stdin flag, can be used to perform non-interactive authentication.

Now that we are logged in to the remote registry, we can push the previously created Helm chart to
the remote registry using the helm push command. helm push requires a location of an already
packaged chart to be provided, along with the destination registry, as shown here:

$ helm push <location_of_tgz_helm_package> <registry/reference>

Signed charts are also supported, so long as the provenance (.prov) file is located in the same
directory as the packaged chart. No additional configuration or flags to the helm push command
are needed. Provenance and chart signing will be discussed in greater detail in Chapter 12, Helm
Security Considerations.

Push the packaged Guestbook chart to GitHub’s container registry:

$ helm push guestbook-0.1.0.tgz oci://ghcr.io/<OWNER>

Pushed: ghcr.io/<OWNER>/guestbook:<version>

Digest: sha256:<SHA>

Once the chart has been pushed, it can be viewed within GitHub via the Packages tab of your user
profile. From any page within GitHub, select your profile picture at the top-right corner of the page
and select Your Profile. The Packages tab can be found at the top of the page.

Publishing to an OCI registry 193

After clicking on the Packages tab, the chart that you pushed previously should be visible, as shown
in the following screenshot:

Figure 8.4 – The Packages tab in GitHub

By default, newly created packages are private and cannot be accessed by others. This configuration
can be changed by selecting the package and, from the Details page, selecting Package Settings on
the far right. Select Change Visibility in the Danger Zone section and select Public.

Alternatively, individual users or teams can be specified instead of changing the visibility if you wish
to restrict access to the helm chart.

Pulling the OCI Guestbook chart

Pulling Helm charts from OCI registries is just as easy as publishing them and the helm pull
command can be used to do this. The options found in the helm pull command are the same for
OCI charts as they are for charts either located within chart repositories or located on the filesystem. Of
the various options available, the --version flag allows the user to specify the chart to be received.
Otherwise, the most recent version per SemVer convention is selected.

Pull the previously published chart from the GitHub container registry, as shown here:

$ helm pull oci://ghcr.io/<OWNER>/guestbook --version 0.1.0

The most recent version of the chart will be retrieved from the registry and the packaged chart (.tgz)
will be stored locally.

Publishing to a Helm Chart Repository194

Summary
After doing some hard work on developing a Helm chart, nothing beats the feeling of finally publishing
your Helm chart to a repository for the world to see! In this chapter, we learned about HTTP and OCI
Helm chart repositories. HTTP repositories allow you to publish your charts to simple web servers,
while OCI registries allow you to publish your Helm charts alongside your container images. To
practice, we published the Guestbook Helm chart to GitHub Pages (an HTTP server) and GitHub’s
container registry (an OCI registry).

In the next chapter, we will learn about the tooling and strategies behind testing Helm charts.

Further reading
To learn more about Helm chart repositories, visit the Chart Repository Guide section of the Helm
documentation: https://helm.sh/docs/topics/chart_repository/#helm.

To learn more about OCI support, visit the documentation’s Registries section: https://helm.
sh/docs/topics/registries/.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What are three different tools you can use to create an HTTP repository?

2. What command can you run to ensure that dependencies are always included in the .tgz
archive?

3. What files are required when publishing to an HTTP server?

4. How is the process of publishing to an HTTP repository different from publishing to an
OCI registry?

5. What Helm command is used to publish to an OCI registry?

6. What Helm command is used to download a Helm chart from an OCI registry?

https://helm.sh/docs/topics/chart_repository/#helm
https://helm.sh/docs/topics/registries/
https://helm.sh/docs/topics/registries/

9
Testing Helm Charts

Testing is a common task that engineers must perform during software development. Testing is
performed to validate the functionality of a product, as well as to prevent regressions as a product
evolves. Well-tested software is easier to maintain and allows developers to confidently provide new
releases to end users.

A Helm chart should be tested properly to ensure that it delivers its features to the level of quality
expected. In this chapter, we will discuss the ways that testing can be applied to Helm charts to verify
the expected capabilities.

In this chapter, we will cover the following topics:

• Setting up your environment

• Verifying Helm templating

• Testing in a live cluster

• Improving chart tests with the Chart Testing tool

• Cleaning up

Technical requirements
For this chapter, you will need the following:

• minikube

• kubectl

• helm

• git

• yamllint

• yamale

• ct (chart-testing)

Testing Helm Charts196

Additionally, you should clone the Packt GitHub repository locally: $ git clone https://
github.com/PacktPublishing/Managing-Kubernetes-Resources-using-
Helm.git.

In this chapter, we will use our minikube environment extensively throughout the scenarios. In the
next section, you will set up the environment.

Setting up your environment
Run the following steps to set up your minikube environment:

1. Start minikube by running the minikube start command:

$ minikube start

2. Then, create a new namespace called chapter9:

$ kubectl create namespace chapter9

With your minikube environment ready, let’s begin by discussing how Helm charts can be tested.
We will begin the discussion by outlining the methods you can use to verify your Helm templates.

Verifying Helm templating
One of the primary purposes of Helm is to create Kubernetes resources. As a result, when developing
and testing a Helm chart, you should ensure that your resources are being generated properly. This
can be accomplished using a variety of methods. We will discuss these in the next section.

Validating template generation locally with helm template

The first way to validate the templating of your chart is to use the helm template command. We
first introduced this command in Chapter 6, Understanding Helm Templates. In this chapter, we will
describe using the helm template command to render a chart’s templates locally.

The helm template command has the following syntax:

$ helm template [NAME] [CHART] [flags]

You can see this command in action by demonstrating it against the Helm chart located in chapter9/
guestbook in the Packt repository:

$ helm template my-guestbook guestbook

The result of this command will display each of the Kubernetes resources that would be created if they
were applied to the cluster, as shown here:

$ git clone https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm.git
$ git clone https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm.git
$ git clone https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm.git

Verifying Helm templating 197

Figure 9.1 – The helm template output

The preceding output displays the beginning portion of the helm template output. As you can see, a
fully rendered ServiceAccount is shown, along with the beginning of another ServiceAccount
that would be created with a release. Rendering these resources allows you to understand how the
resources would be created if the release was installed against a Kubernetes cluster.

During chart development, you may want to use the helm template command regularly to validate
that your Kubernetes resources are being generated properly.

Some common aspects of chart development that you may want to validate throughout are as follows:

• Parameterized fields are successfully replaced by default or overridden values

• Control structures such as if, range, and with successfully generate YAML based on the
provided values.

• Resources contain proper spacing and indentation.

• Functions and pipelines are used correctly to properly format and manipulate YAML.

• Input validation mechanisms such as the required and fail functions or the values.
schema.json file properly validate values based on user input.

• Dependencies have been declared properly and their resource definitions appear in the helm
template output.

Testing Helm Charts198

In the next section, we will discuss how server-side validation can be enabled when rendering your
resources with helm template.

Adding server-side validation to chart rendering

While the helm template command is important to the chart development process and should be
used frequently to verify your chart rendering, it does have a key limitation. The main purpose of the
helm template command is to provide client-side rendering, meaning it does not communicate
with the Kubernetes API server to provide resource validation. If you would like to ensure that your
resources are valid after they have been generated, you can use the --validate flag to instruct
helm template to communicate with the Kubernetes API server:

$ helm template my-release <chart_name> --validate

With the --validate flag specified, any generated template that does not produce a valid Kubernetes
resource emits an error message. Imagine, for example, a deployment template was used with the
incorrect apiVersion. What may appear to be valid locally would be incorrect when applying
the --validate flag. Here’s an example error message that Kubernetes could throw with invalid
content that was triggered through the use of the --validate flag:

Error: unable to build kubernetes objects from release
manifest: unable to recognize "": no matches for kind
"Deployment" in version "v1"

While helm template does provide server-side validation capabilities with the --validate
flag, it is not the only way to determine if your chart is generating valid Kubernetes resources. As an
alternative approach, you can apply the --dry-run flag against the install, upgrade, rollback,
and uninstall commands. Here is an example of using this flag with the install command:

$ helm install my-chart <chart_name> --dry-run

The --dry-run flag is primarily used by end users to perform a sanity check before running an
installation. This helps ensure that values have been provided properly and that the installation will
produce the desired results. It is a good last line of defense that can be used to verify that errors will
not be thrown before you execute the associated command.

While it is necessary to verify that templates are generated the way you intend, it is also important to
perform linting to ensure that Helm charts and generated resources follow best formatting practices.
There are a couple of ways to accomplish this goal. Let’s take a look.

Verifying Helm templating 199

Linting Helm charts and templates

Linting a Helm chart involves two high-level steps:

1. Ensuring that a Helm chart is valid

2. Ensuring that a Helm chart follows consistent formatting practices

To ensure that a Helm chart is valid, we can use the helm lint command, which has the following
syntax:

$ helm lint <chart-name> [flags]

The helm lint command is used to validate the Chart.yaml file and ensure that the Helm chart
does not contain any breaking issues. Note that this command does not validate rendered resources
or perform YAML style linting.

You can run the helm lint command against the guestbook chart located in the Packt repository,
as shown here:

$ helm lint chapter9/guestbook

==> Linting chapter9/guestbook

[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed

The preceding output shows that the chart is valid, noted by the 0 chart(s) failed message.
The [INFO] message reported that the icon field in the Chart.yaml file is recommended, but
not required. Other types of messages include [WARNING], which indicates that the chart breaks
conventions, and [ERROR], which indicates that the chart will fail at installation.

Let’s run through several examples to illustrate each potential outcome. Consider the chart in
chapter9/no-chart-yaml, which contains the following file structure:

no-chart-yaml/

 templates/

 Values.yaml

As you can probably guess from the name, this chart is missing a Chart.yaml definition file. When
we run helm lint over this chart, we get an error:

$ helm lint chapter9/no-chart-yaml

==> Linting chapter9/no-chart-yaml

Error unable to check Chart.yaml file in chart: stat chapter9/
no-chart-yaml/Chart.yaml: no such file or directory

Error: 1 chart(s) linted, 1 chart(s) failed

Testing Helm Charts200

This error indicates that Helm cannot find the Chart.yaml file, resulting in an invalid chart.

We can see different errors if we add an empty Chart.yaml file. Let’s run helm lint on the
chapter9/empty-chart-yaml chart:

$ helm lint chapter9/empty-chart-yaml

==> Linting chapter9/empty-chart-yaml

[ERROR] Chart.yaml: name is required

[ERROR] Chart.yaml: apiVersion is required. The value must be
either "v1" or "v2"

[ERROR] Chart.yaml: version is required

[INFO] Chart.yaml: icon is recommended

[ERROR] templates/: validation: chart.metadata.name is required

[ERROR] : unable to load chart

validation: chart.metadata.name is required

Error: 1 chart(s) linted, 1 chart(s) failed

The output lists each of the required fields that are missing from the Chart.yaml file.

The linter will also check for the existence of other files, such as the values.yaml file and the
templates directory. It also ensures that files under the templates directory have valid .yaml,
.yml, .tpl, or .txt file extensions.

The helm lint command is great for checking whether your chart contains the appropriate
contents, but it does not carry out exhaustive linting of your chart’s YAML style. To perform this type
of linting, you can use another tool called yamllint, which can be found at https://github.
com/adrienverge/yamllint. This tool can be installed using the pip3 (or pip) package
manager across a range of operating systems by using the following command:

$ pip3 install yamllint –user

It can also be installed with your system’s package manager, as described in the yamllint quick-start
instructions at https://yamllint.readthedocs.io/en/stable/quickstart.html.

To use yamllint on your chart’s resources, you must use it in combination with the helm template
command to feed the output of the rendered templates as input to yamllint. Let’s run yamllint
against the chapter9/guestbook Helm chart:

$ helm template my-guestbook chapter9/guestbook | yamllint -

A snippet of the result is shown here:

https://github.com/adrienverge/yamllint
https://github.com/adrienverge/yamllint
https://yamllint.readthedocs.io/en/stable/quickstart.html

Verifying Helm templating 201

Figure 9.2 – yamllint output

The line numbers provided to the left reflect the entirety of the helm template output, which
can make it difficult to determine which line from the yamllint output corresponds with which
line from your template files. You can simplify this by redirecting the helm template output to
determine its line numbers:

$ cat -n <(helm template my-guestbook chapter9/guestbook)

The yamllint tool performs linting against many different rules, including the following:

• Indentation

• Line length

• Trailing spaces

• Empty lines

• Comment format

You can define your own rules by authoring them in one of the following files:

• .yamllint, .yamllint.yaml, or .yamllint.yml in the current working directory

• $XDG_CONFIG_HOME/yamllint/config

• ~/.config/yamllint/config

An example .yamllint.yaml file can be found in chapter9/yamllint-override. Here,
we have defined the following contents:

rules:

 indentation:

 indent-sequences: whatever

Testing Helm Charts202

This sample creates one rule that instructs yamllint not to enforce any particular method of
indentation.

A deep dive into configuring yamllint rules is beyond the scope of this chapter, but you can refer
to the yamllint documentation on the topic of rules to learn more: https://yamllint.
readthedocs.io/en/stable/rules.html.

In this section, we discussed how you can validate the local rendering of your Helm charts by using
the helm template, helm lint, and yamllint commands. This, however, does not verify
your chart’s functionality or the application’s ability to run properly. In the next section, we will address
this topic by learning how to create tests in a live Kubernetes cluster.

Testing in a live cluster
Understanding how to perform tests in a live Kubernetes cluster is an essential part of developing and
maintaining a Helm chart. Live testing helps ensure your chart is functioning as intended and can be
used to help prevent regressions as new additions are introduced to your chart over time.

Testing can involve, but is not limited to, the following two different constructs:

• Readiness probes and the helm install --wait command

• Test hooks and the helm test command

A readiness probe is a type of health check in Kubernetes that, upon success, marks a pod as Ready
and makes the pod eligible to receive ingress traffic. An example of a readiness probe is located at
chapter9/guestbook/templates/deployment.yaml:

readinessProbe:

 httpGet:

 path: /

 port: http

This readiness probe will mark the pod as Ready when an HTTP GET request succeeds against
the / path.

Readiness probes can be used alongside the –wait flag, which forces Helm to return successfully
only when the probe passes. If the readiness probe times out, Helm will return exit code 1, indicating
that the installation was not successful. A timeout occurs 5 minutes after the installation begins, by
default. This can be configured with the --timeout flag.

The following is an example of invoking helm install with the --wait flag:

$ helm install my-guestbook chapter9/guestbook --wait

https://yamllint.readthedocs.io/en/stable/rules.html
https://yamllint.readthedocs.io/en/stable/rules.html

Testing in a live cluster 203

Other commands that also support the --wait flag include upgrade, rollback, and uninstall.
However, when used with uninstall, Helm waits for each resource to be deleted instead.

Besides readiness probes, testing in Helm can also be performed by using test hooks and the helm
test command. Test hooks are pods that perform custom tests after the Helm chart is installed to
confirm they execute successfully. They are defined under the templates directory and contain
the helm.sh/hook: test annotation. When the helm test command is run, templates with
the test annotation are created and execute their defined functions.

We can see an example test in chapter9/guestbook/templates/tests/test-connection.
yaml:

apiVersion: v1

kind: Pod

metadata:

 name: "{{ include "guestbook.fullname" . }}-test-connection"

 labels:

 {{- include "guestbook.labels" . | nindent 4 }}

 annotations:

 "helm.sh/hook": test

spec:

 containers:

 - name: wget

 image: busybox

 command: ['wget']

 args: ['{{ include "guestbook.fullname" . }}:{{ .Values.
service.port }}']

 restartPolicy: Never

As we can see, this test attempts to make a call to the guestbook frontend.

Let’s work on running this Helm test in our minikube environment.

Running the chart test

To run a chart’s tests, the chart must be installed in a Kubernetes environment using the helm
install command. Because the guestbook chart contains readiness probes for the frontend
and Redis instances (provided by the Redis dependency), we can add the --wait flag to our helm
command to block until all pods are ready. Run the following command to install the guestbook chart:

$ helm install guestbook chapter9/guestbook -n chapter9 –wait

Testing Helm Charts204

Once the chart has been installed, you can use the helm test command to execute the test life
cycle hook. The syntax for the helm test command is as follows:

helm test [RELEASE] [flags]

Run the helm test command against the guestbook release:

$ helm test guestbook –n chapter9

If your test is successful, you will see the following results in the output:

NAME: guestbook

LAST DEPLOYED: Sun Mar 13 17:18:51 2022

NAMESPACE: chapter9

STATUS: deployed

REVISION: 1

TEST SUITE: guestbook-test-connection

Last Started: Sun Mar 13 17:26:00 2022

Last Completed: Sun Mar 13 17:26:03 2022

Phase: Succeeded

When running your tests, you can also use the --logs flag to display the logs from your test pods.
Let’s run the test again and inspect the logs by including the --logs flag:

$ helm test guestbook --logs –n chapter9

<skipped>

POD LOGS: guestbook-test-connection

Connecting to guestbook:80 (10.98.198.86:80)

saving to 'index.html'

index.html 100%
|********************************| 920 0:00:00 ETA

'index.html' saved

As evidenced by the logs from our test pod, our application is up and running! As a final step, you
can delete your release with helm uninstall:

$ helm uninstall guestbook –n chapter9

In this section, we ran a test hook that served as a smoke test for our chart installation. In the next
section, we will discuss how the testing process can be improved by leveraging a tool called ct.

Improving chart tests with the Chart Testing tool 205

Improving chart tests with the Chart Testing tool
The testing methods described in the previous section are sufficient enough to determine whether a
Helm chart can be successfully installed. However, some key limitations are inherent to the standard
Helm testing process and need to be discussed.

The first limitation to consider is the difficulty of testing different permutations that can occur within
a chart’s values. Because the helm test command does not provide the ability to modify a release’s
values beyond those set at the time of an installation or upgrade, the following workflow must be
followed when running helm test against different values:

1. Install your chart with an initial set of values.

2. Run helm test against your release.

3. Delete your release.

4. Install the chart with a different set of values.

5. Repeat Step 2 through Step 4 until a significant amount of value possibilities have been tested.

Each of these manual steps poses the risk of errors.

In addition to testing different value permutations, you should also make sure regressions do not
occur when making modifications to your charts. The best way to prevent regressions is to include
the usage of helm upgrade in your testing workflow:

1. Install the previous chart version.

2. Upgrade your release to the newer chart version.

3. Delete the release.

4. Install the newer chart version.

This workflow should be repeated against each set of values to ensure that there are no regressions or
unintended breaking changes.

These processes sound tedious but imagine the additional strain chart developers face when maintaining
Helm chart monorepos, where multiple charts need to be tested and maintained at the same time.
A repository is considered a monorepo when multiple different artifacts or modules are contained
in the same repository. A monorepo design is the most common way for a chart developer or an
organization to develop and maintain its charts.

A Helm chart monorepo could have the following file structure:

helm-charts/

 guestbook/

 Chart.yaml

Testing Helm Charts206

 templates/

 README.md

 values.yaml

 redis/ # Contains the same file structure as
'guestbook'

 wordpress/ # Contains the same file structure as
'guestbook'

Helm charts in a well-maintained monorepo should adhere to proper SemVer versioning to denote the
types of changes made between releases. SemVer versions follow a MAJOR.MINOR.PATCH version
format. Use the following list as a guideline on how to increase a SemVer version:

• Increment the MAJOR version if you are making a breaking change to your chart. A breaking
change is a change that is not backward compatible with the previous chart version.

• Increment the MINOR version if you are adding a feature but you are not making a breaking
change. You should increment this version if the change you are making is backward compatible
with the previous chart version.

• Increment the PATCH version if you are making a bug fix or addressing a security vulnerability
that will not result in a breaking change. This version should be incremented if the change is
backward-compatible with the previous chart version.

With the responsibilities of chart testing and versioning, it can become increasingly difficult for a
Helm chart maintainer to ensure that charts are properly tested, and their versions are incremented,
especially if maintaining a monorepo with multiple Helm charts. This challenge prompted the Helm
community to create a tool called ct to provide structure and automation around the testing and
maintenance of Helm charts. We will discuss this tool next.

Introducing the Chart Testing project

The Chart Testing project, which can be found at https://github.com/helm/chart-
testing, is designed to be used against charts in a Git monorepo to perform automated linting,
validation, and testing. This automated testing is achieved by using Git to detect when charts have
changed against a specified branch. Charts that have changed should undergo testing, while charts
that were unchanged do not need to be tested.

The project’s Command-Line Interface (CLI), ct, provides four primary commands:

• lint: Lints and validates charts that have been modified

• install: Installs the chart in a running Kubernetes cluster and runs test hooks against charts
that have been modified

https://github.com/helm/chart-testing
https://github.com/helm/chart-testing

Improving chart tests with the Chart Testing tool 207

• lint-and-install: Combines the lint and install commands

• list-changed: Lists charts that have been modified

The lint-and-install command is the primary function of ct. It performs linting, installs charts
in your Kubernetes cluster, and runs any test hooks that are present. It also checks whether you have
increased the charts’ version fields in Chart.yaml for any chart that has been modified. This
validation helps maintainers enforce proper versioning of their Helm charts.

The ct tool also lets you test Helm charts against multiple different values files. During the invocation
of the lint, install, and lint-and-install commands, ct loops through each test values
file and performs linting and testing based on the different permutations of values provided. Test
values files for use by ct are written under a folder called ci/ and end with the values.yaml
format. The following is an example Helm chart structure that includes the ci folder:

guestbook/

 Chart.yaml

 ci/

 nodeport-service-values.yaml

 ingress-values.yaml

 templates/

 values.yaml

Each values file under ci/ should be named appropriately to determine the function that the
values are testing. For example, nodeport-service-values.yaml might be used to ensure
that NodePort services are configured properly, and ingress-values.yaml would test Ingress.

The most common ct command you are likely to use is the lint-and-install command. When
this command is running, a series of steps are executed:

1. Detect the charts that have been modified within the Git monorepo. Ensure that the charts’
versions have been incremented.

2. For each chart that has been modified, lint the chart and each values file under the ci/ folder.

3. For each chart that has been modified, install the chart in the Kubernetes cluster and wait for
the readiness probes to pass. Once the probes have passed, run test hooks, if present. Repeat
Step 3 for each values file in the ci/ folder.

4. Uninstall the Helm release.

As you can see, this command performs a variety of steps to ensure your charts are properly linted
and tested. However, by default, the lint-and-install command does not check for backward
compatibility. This feature can be enabled by adding the --upgrade flag.

Testing Helm Charts208

When the --upgrade flag is provided, ct checks if the MAJOR version number of the chart’s version
has been incremented. If a breaking change is not expected, then ct deploys the previous chart version
first and then upgrades to the new version. This helps ensure that regressions have not occurred. Then,
ct installs the new version directly using a standard release. We recommend adding the --upgrade
flag when using the lint-and-install command.

Let’s continue by installing ct and its dependencies locally. Then, we will look at an example of how
ct can be used.

Installing the Chart Testing tools

To use ct, you must have the following tools installed on your local machine:

• helm

• git (version 2.17.0 or later)

• yamllint

• yamale

• kubectl

Instructions for installing helm and kubectl were provided in Chapter 2, Preparing a Kubernetes and
Helm Environment, while yamllint was installed earlier in this chapter. Now, we’ll install yamale,
which is a tool for validating YAML schemas. It is used by ct to validate the Chart.yaml file.

yamale can be installed with the pip3 package manager, as shown here:

$ pip3 install yamale –user

You can also install Yamale manually by downloading an archive from https://github.
com/23andMe/Yamale/archive/master.zip. Once downloaded, unzip the archive and
run the setup.py script:

$ python3 setup.py install

Once you have the prerequisite tooling installed, you should download ct from the project’s GitHub
releases page at https://github.com/helm/chart-testing/releases. Each release
contains an Assets section with a list of archives associated with each release.

Download the archive that corresponds with the platform type of your local machine. Version v3.5.1
was the version that was used for this publication:

https://github.com/23andMe/Yamale/archive/master.zip
https://github.com/23andMe/Yamale/archive/master.zip
https://github.com/helm/chart-testing/releases

Improving chart tests with the Chart Testing tool 209

Figure 9.3 – The Helm releases page on GitHub

Unarchive the release once you have downloaded the appropriate archive from the GitHub releases
page. Once unarchived, you will see the following contents:

LICENSE

README.md

etc/chart_schema.yaml

etc/lintconf.yaml

ct

The LICENSE and README.md files can be removed as they are not needed.

The etc/chart_schema.yaml and etc/lintconf.yaml files can be moved to either the
$HOME/.ct/ or /etc/ct/ location on your local machine. These files provide yamllint and
yamale rules for linting and schema validation. When moved to the suggested locations, they provide
default rules for any invocation of ct, regardless of their location on the filesystem.

Testing Helm Charts210

You should also move ct to a location that is included in your system’s PATH variable. Moving ct as
well as the files located under etc can be done with the following commands:

$ mkdir $HOME/.ct

$ mv $HOME/Downloads/etc/* $HOME/.ct/

$ mv $HOME/Downloads/ct /usr/local/bin/

Now that all of the required tools have been installed, let’s clone the Packt repository – that is, if you
did not clone it previously. We will interact with this repository to demonstrate the use of ct:

$ git clone https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

Once cloned, you will notice that this repository contains several ct-related files:

• lintconf.yaml: This is a copy of the same file that was included in the ct archive. When added
to a repository, ct uses this local reference instead of the default file located at $HOME/.ct/.

• chart_schema.yaml: This is also a copy of the same file that was included in the ct archive.
When added to a repository, ct uses this local reference instead of the default file located at
$HOME/.ct/.

• ct.yaml: This file contains the configuration for ct.

The following are a couple of the configurations that are included in the ct.yaml file:

chart-dirs:

 - helm-charts/charts

chart-repos:

 - bitnami=https://raw.githubusercontent.com/bitnami/charts/
archive-full-index/bitnami

The chart-dirs field indicates that the helm-charts/charts directory relative to ct.yaml
is the root of the Helm chart monorepo. The chart-repos field provides a list of repositories that
ct should add to download dependencies. A variety of other configurations can be added to this file
to customize the execution of ct. The full list of available options can be reviewed in the Chart Testing
documentation at https://github.com/helm/chart-testing.

Now, let’s see ct in action by running the lint-and-install command.

https://github.com/helm/chart-testing

Improving chart tests with the Chart Testing tool 211

Running the lint-and-install command

In the helm-charts/charts folder, which is the location of our Helm charts monorepo, we
have two charts:

• guestbook: This is the guestbook chart that we wrote in Part 2 of this book.

• nginx: This is a basic Helm chart that was created with helm create and is used to deploy
an nginx reverse proxy.

The guestbook and nginx Helm charts are the charts that will be tested with ct. First, let’s navigate
to the top level of the Git repository:

$ cd Managing-Kubernetes-Resources-using-Helm

$ ls

LICENSE chapter4 chapter6 chapter8
 chart_schema.yaml helm-charts

README.md chapter5 chapter7 chapter9
 ct.yaml lintconf.yaml

Since ct should run in the same folder as the ct.yaml file, we can simply run ct lint-and-
install from the top level of the repository:

$ ct lint-and-install

After running this command, you should see the following message:

Linting and installing charts...

--

No chart changes detected.

--

All charts linted and installed successfully

Since none of the charts were modified, ct did not perform any testing on your charts. We should
modify at least one chart in the helm-charts/charts directory to allow for testing to take place.
Since normal development would likely involve feature branches, let’s create a new Git branch where
we will make modifications. Create a new branch called chart-testing-example by running
the following command:

$ git checkout –b chart-testing-example

Testing Helm Charts212

The modifications can be of any size and type, so for this example, we will simply modify the nginx
chart’s Chart.yaml file. Modify the description fields of the helm-charts/charts/nginx/
Chart.yaml file so that they read as follows:

description: Deploys an NGINX instance to Kubernetes

Previously, this value was A Helm chart for Kubernetes. Verify that the nginx chart has
been modified by running the git status command:

$ git status

You should see an output similar to the following:

Figure 9.4 – Git status, displaying a change in Chart.yaml

Now, try to run the lint-and-install command again:

$ ct lint-and-install

This time, ct displays the charts from the monorepo that have changed:

Linting and installing charts...

--
--

Charts to be processed:

--
--

nginx => (version: "1.0.0", path: "helm-charts/charts/nginx")

--
--

The process, however, fails later on because the nginx chart version was not modified:

Improving chart tests with the Chart Testing tool 213

Figure 9.5 – ct output when chart versions are not updated

This can be fixed by incrementing the version of the nginx chart. Since this change does not introduce
new features, we will increment the PATCH version. Modify the nginx chart version to 1.0.1 in
the Chart.yaml file:

version: 1.0.1

Once the version is updated, run the lint-and-install command again:

$ ct lint-and-install

Now that the chart version has been incremented, the lint-and-install command will follow the
full testing workflow. You will see that the nginx chart has been linted and deployed to an automatically
created namespace (though a specific namespace can be targeted by using the --namespace flag).
Once the deployed pods are reported as ready, ct will automatically run the test hooks denoted by
resources with the helm.sh/hook test annotation. ct will also print the logs of each test pod,
as well as the namespace events.

You may notice that the nginx chart was deployed multiple times. This is because the nginx chart
contains a ci/ folder, located within the helm-charts/charts/nginx/ci directory. This
folder contains two different values files, so the nginx Helm chart was installed two different times
to test both sets of values. This can be observed throughout the output of lint-and-install:

Linting chart with values file 'nginx/ci/nodeport-values.
yaml'...

Linting chart with values file 'nginx/ci/ingress-values.
yaml'...

Installing chart with values file 'nginx/ci/nodeport-values.
yaml'...

Installing chart with values file 'nginx/ci/ingress-values.
yaml'...

Testing Helm Charts214

While this process was useful for testing the functionality of updated charts, it did not validate whether
upgrades to the newer version will be successful. To do this, we need to provide the --upgrade flag.
Run lint-and-install again, but this time, let’s add the --upgrade flag:

$ ct lint-and-install --upgrade

This time, an in-place upgrade will occur for each values file under the ci/ directory. This can be
seen in the following output:

Testing upgrades of chart 'nginx => (version: "1.0.1", path:
"nginx")' relative to previous revision 'nginx => (version:
"1.0.0", path: "ct_previous_revision216728160/nginx")'...

Recall that an in-place upgrade will only be tested if the MAJOR version between versions is the same.
If the --upgrade flag was specified and the MAJOR version was changed, you would see a message
similar to the following:

Skipping upgrade test of 'nginx => (version: "2.0.0", path:
"helm-charts/charts/nginx")' because: 1 error occurred:

* 2.0.0 does not have same major version as 1.0.0

Now that you have an understanding of how to test your Helm charts robustly, we will conclude by
cleaning up the minikube environment.

Cleaning up
If you have finished with the examples in this chapter, you can remove the chapter9 namespace
from your minikube cluster:

$ kubectl delete ns chapter9

Finally, shut down your minikube cluster by running minikube stop.

Summary
In this chapter, you learned about different methods you can apply to test your Helm charts. The most
basic way to test a chart is to run the helm template command against a local chart directory
and determine whether its resources were generated. You can also use the helm lint command
to ensure that your chart follows the correct formatting for Helm resources, and you can use the
yamllint command to lint the YAML style that’s used in your chart.

Further reading 215

Apart from local templating and linting, you can also perform live tests on a Kubernetes environment
with the helm test command and the ct tool. In addition to performing basic chart testing
capabilities, ct also provides features that make it easier to maintain Helm charts in a monorepo.

In the next chapter, you will learn how Helm can be used within a continuous delivery (CD) and
GitOps setting.

Further reading
For additional information on the helm template and helm lint commands, please refer to
the following resources:

• helm template: https://helm.sh/docs/helm/helm_template/

• helm lint: https://helm.sh/docs/helm/helm_lint/

The following pages from the Helm documentation discuss chart tests and the helm test command:

• Chart tests: https://helm.sh/docs/topics/chart_tests/

• The helm test command: https://helm.sh/docs/helm/helm_test/

Finally, see the Chart Testing GitHub repository for more information about the ct CLI: https://
github.com/helm/chart-testing.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What is the purpose of the helm template command? How does it differ from the helm
lint command?

2. What tool can be leveraged to lint the YAML style of rendered Helm templates?

3. How is a chart test created? How is a chart test executed?

4. What is the difference between helm test and ct lint-and-install?

5. What is the purpose of the ci/ folder when used with the ct tool?

6. How does the --upgrade flag change the behavior of the ct lint-and-install
command?

https://helm.sh/docs/helm/helm_template/
https://helm.sh/docs/helm/helm_lint/
https://helm.sh/docs/topics/chart_tests/
https://helm.sh/docs/helm/helm_test/
https://github.com/helm/chart-testing
https://github.com/helm/chart-testing

Part 3:
Advanced

Deployment
Patterns

The Helm command-line interface (CLI) is a robust toolkit, but efficiency can be further increased
with automation. In Part 3, you will learn about incorporating Helm into industry-standard
deployment methodologies. You will also take a deep dive into important security considerations
throughout day-to-day Helm usage.

In this part, we will cover the following topics:

• Chapter 10, Automating Helm with CD and GitOps

• Chapter 11, Using Helm with the Operator Framework

• Chapter 12, Helm Security Considerations

10
Automating Helm

with CD and GitOps

Throughout this book, we have demonstrated how to use different Helm commands to manage
Kubernetes resources and applications. While these commands (namely install, upgrade,
rollback, and uninstall) are effective in carrying out their respective tasks, we have been
invoking them manually from the command line. Manual invocation can serve as a pain point when
managing multiple different applications and can make it difficult for enterprises to scale. As a result,
we should explore opportunities to automate our Helm deployments.

In this chapter, we will investigate concepts relating to continuous delivery (CD) and GitOps. These
are methodologies that involve automatically invoking the Helm command-line interface (CLI) to
perform automated chart installations based on the contents of a Git repository. By implementing the
CD and GitOps concepts, you can further increase your efficiency with Helm.

In this chapter, we will cover the following topics:

• Understanding CI/CD and GitOps

• Setting up your environment

• Installing Argo CD

• Deploying a Helm chart from a Git repository

• Deploying a Helm chart from a remote Helm chart repository

• Deploying a Helm chart to multiple environments

• Cleaning up

Automating Helm with CD and GitOps220

Technical requirements
This chapter requires that you have the following technologies installed on your local machine:

• minikube

• Helm

• kubectl

• Git

In addition to these tools, you can find the Packt repository that contains the resources associated
with the examples in this chapter on GitHub at https://github.com/PacktPublishing/
Managing-Kubernetes-Resources-using-Helm. This repository will be referenced
throughout this chapter.

Understanding CI/CD and GitOps
So far, we have addressed manually invoking the Helm CLI to install and manage Helm charts. While
this is acceptable when getting started with Helm, as you look to manage a chart in a production-like
environment, there are questions that you need to consider, including the following:

• How can I be sure that the best practices for Helm chart deployments are enforced?

• What are the implications for collaborators participating in the deployment process?

You may be familiar with the best practices and processes around deploying Helm charts; however,
any new collaborators or team members may not have the same level of knowledge or expertise.
Not to mention, you may become limited in the level of support that you can provide to others as
your responsibilities among the number of applications you manage increases. Through the use of
automation and repeatable processes, we can address these challenges.

While this chapter will focus primarily on CD and GitOps, we would be remiss if we were to avoid
introducing continuous integration (CI), which is commonly paired with CD. We will discuss
continuous integration/continuous delivery (CI/CD) and GitOps in the next section.

CI/CD

As enterprises sought to accelerate the software development life cycle over the years, the need for
an automated development process arose, leading to the creation of CI. CI is enabled by using an
orchestrator to automatically build and test application code. As new commits are pushed to a Git
repository, the orchestrator automatically retrieves the source code and undergoes a predetermined
set of steps to build the application (among other tasks, such as code quality scanning, vulnerability
scanning, and so on). By performing automatic builds when new commits are added, regressions

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm

Understanding CI/CD and GitOps 221

and breaking changes can be spotted early on in the software development life cycle. CI also helps
address the challenges embodied by the phrase it works on my machine by providing a common
build environment.

The ability to apply many of CI’s concepts throughout the software development life cycle as an
application moves toward production led to the creation of CD. CD is a set of defined steps provided
to progress software through a release process. CD has gained acceptance and popularity among many
organizations where proper change control is enforced, and approvals are required for the software
to progress to the next stage. As many of the concepts around CI/CD are automated in a repeatable
fashion, teams can look to fully eliminate the need for manual approval steps once they are confident
that they have a reliable framework in place.

The process of implementing a fully automated build, test, deployment, and release process without
human intervention is known as continuous deployment. While many software projects may never
fully achieve continuous deployment, teams that can implement the concepts emphasized by CI/CD
can produce real business value faster than less automated methods.

In the next section, we will introduce GitOps as a mechanism to improve how applications and their
configuration are managed.

Taking CI/CD to the next level using GitOps

Kubernetes is a platform that embraces the use of declarative configurations. While applications can
be managed using imperative kubectl commands, the preferred approach, which we covered in
Chapter 1, Understanding Kubernetes and Helm, is to declaratively state the resources through the
use of manifests. In the same way that an application traverses its way through a CI/CD pipeline,
Kubernetes manifests can implement many of the same CI/CD patterns. Like application code,
Kubernetes manifests should also be stored in a source code repository, such as Git, and can undergo
the same type of build, test, and deployment practices.

The rise in popularity of managing the life cycle of Kubernetes applications and cluster configuration
within Git repositories led to the concept of GitOps. First introduced by the software company
WeaveWorks in 2017, GitOps has increased in popularity as a way to manage Kubernetes configurations.
While GitOps is best known in the context of Kubernetes, its principles can be applied to any type
of environment.

Similar to CI/CD, tools have been developed to manage the GitOps process. These include Argo CD
from Intuit and Flux from WeaveWorks. However, you do not need to use a tool specifically designed
for GitOps as any automation utility or CI/CD orchestrator can be used. The key differentiator between
a traditional CI/CD tool and a tool designed for GitOps is a GitOps tool’s ability to constantly observe
the state of the target environment and apply desired configurations when the live state does not match
the desired state, as defined in the manifests stored in Git. In the context of Kubernetes, these tools
make use of the controller pattern, which is fundamental to Kubernetes itself.

Automating Helm with CD and GitOps222

Since Helm charts are ultimately rendered as Kubernetes resources, they, too, can be used to participate
in the GitOps process. In this chapter, we will leverage Argo CD to deploy Helm chart resources to
Kubernetes in a GitOps fashion. Note that this is not intended to be a comprehensive overview of Argo
CD, but it will give you an idea of how it can be integrated with Helm to provide a GitOps approach
toward Helm deployments.

Setting up your environment
In this chapter, we will create several namespaces to install Argo CD and deploy an example Helm
chart across different namespaces.

Run the following commands to prepare your environment:

1. Start minikube by running the minikube start command:

$ minikube start

2. Then, create a new namespace called argo, where we will later install Argo CD:

$ kubectl create namespace argo

3. Next, create a namespace called chapter10, where we will deploy an example Helm chart
from Argo CD:

$ kubectl create namespace chapter10

4. Finally, create two namespaces called chapter10-dev and chapter10-prod. We will
use these namespaces to demonstrate deploying a Helm chart across multiple environments
using Argo CD:

$ kubectl create namespace chapter10-dev

$ kubectl create namespace chapter10-prod

With your minikube environment ready and your namespaces created, let’s begin by deploying Argo
CD. Then, we will walk through examples of using Argo CD to deploy an application to Kubernetes
with Helm.

Installing Argo CD
Argo CD can be installed in Kubernetes by using a set of manifest files or by installing a Helm chart.
Of course, we will choose to install Argo CD using the community-provided Helm chart.

The repository URL for the Argo CD Helm chart is https://argoproj.github.io/argo-
helm (which can be found in Artifact Hub, a process described in Chapter 3, Installing Your First
App with Helm).

https://argoproj.github.io/argo-helm
https://argoproj.github.io/argo-helm

Installing Argo CD 223

Let’s add this repository using the Helm CLI:

$ helm repo add argo https://argoproj.github.io/argo-helm

Once the repository has been added, you can install it. We have provided a values file you can use
for the installation in the Packt repository at https://github.com/PacktPublishing/
Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/argo-
values/values.yaml. The provided values file disables Dex (an OpenID Connect provider),
along with Argo’s notification system, since we will not be using these components in this chapter.

Let’s install Argo CD in the argo namespace by running the following command:

$ helm install argo argo/argo-cd –-version 4.5.0 --values
chapter10/argo-values/values.yaml -n argo

The Helm chart installs the following components in the argo namespace:

• Argo CD Application Controller, a controller that watches for Application custom
resources. When an Application resource is created, Argo CD creates resources to the
desired destination cluster and namespace.

• Argo CD ApplicationSet Controller, a controller that watches for ApplicationSet custom
resources. ApplicationSet provides a convenient way to deploy multiple different yet
related Application resources. We will work with ApplicationSets when we demonstrate
how to deploy a Helm chart to multiple different environments or namespaces.

• Redis, which is used for caching backend data.

• Argo CD Repo Server, which provides a local instance of cloned Git repositories.

• Argo CD Server, which provides an API for interacting with Argo CD. This component also
provides a frontend web interface.

Once each of the pods in the argo namespace reports the 1/1 ready state (shown by running kubectl
get pods –n argo), we can access the Argo CD web UI. First, we need to get the admin password
that was randomly generated during the Helm installation. We can do this by accessing a Kubernetes
secret in the argo namespace:

$ kubectl get secret argocd-initial-admin-secret –n argo –o
jsonpath='{.data.password}' | base64 –d

The username for accessing the web UI will be admin, and the password will be the string displayed
after getting the password from the argocd-initial-admin-secret.

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/argo-values/values.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/argo-values/values.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/argo-values/values.yaml

Automating Helm with CD and GitOps224

Finally, we can run port-forward to access the web UI. In a separate terminal, run the following
port-forward command:

$ kubectl port-forward svc/argo-argocd-server 8443:443 –n argo

After running the port-forward command, navigate to https://localhost:8443 in a web
browser. Accept the self-signed certificate exception; you will be presented with the Argo CD login page:

Figure 10.1 – The Argo CD login page

For the username, enter admin, and for the password, provide the string that was displayed after
getting the password from argocd-initial-admin-secret. After successfully logging in,
you should see the following page titled APPLICATIONS TILES:

Figure 10.2 – The Argo CD APPLICATIONS TILES page

https://localhost:8443

Deploying a Helm chart from a Git repository 225

This page can be used to create new applications, which represent application deployments (or any
set of Kubernetes resources). However, in the spirit of adhering to a more declarative configuration
approach, we will make deployments in this chapter by applying Application YAML resources
instead. With that said, this UI will populate with application tiles as we apply the Application
resources directly using kubectl. Feel free to reference this UI throughout this chapter to see how
they are visualized.

With Argo CD successfully deployed, let’s continue by deploying a Helm chart from a Git repository.

Deploying a Helm chart from a Git repository
In true GitOps fashion, Argo CD can be used to deploy a Helm chart from a Git repository. The following
diagram shows the flow involved in deploying a Helm chart from a Git repository using Argo CD:

Figure 10.3 – Deploying a Helm chart from a Git repository

Here, you can see that Argo CD clones the Git repository containing the desired Helm chart. Then,
Argo CD interprets the repository as one containing a Helm chart, since it notices the presence of
the Chart.yaml file and surrounding Helm chart structure. From there, Argo CD proceeds by
rendering the Helm chart manifests and applying them to the designated Kubernetes namespace.

Note that Argo CD renders the Helm chart templates and applies them as opposed to installing the
Helm chart directly. This is because Argo CD only applies Kubernetes manifests, so it first runs a helm
template internally to produce the full Kubernetes manifest from the provided Helm values. If you
were to run the helm list command after deploying a chart using Argo CD, you would not see
any releases listed. You would, however, be able to see the applied resources.

You may be curious about the implications that deploying rendered Kubernetes manifests has on
application rollbacks since the helm rollback command cannot be used. With the GitOps
ideology, you would ideally roll back by performing changes within your Git repository to revert such
actions. Argo CD would then detect any new commits that have been created against the target branch
and apply the desired changes. With that said, Argo CD does have a native rollback capability to roll
back to a previous history ID. This enables users to roll back without reverting to their Git repository.

Automating Helm with CD and GitOps226

Let’s begin to deploy a Helm chart from Git by observing the Application resource located in the
Packt repository at chapter10/local-chart/application.yaml (https://github.
com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/
main/chapter10/local-chart/application.yaml). We can break this resource down
into separate components:

• First, we must define the resource’s kind and provide the resource metadata:

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: nginx

 namespace: argo

 finalizers:

 resources-finalizer.argocd.argoproj.io

Notice the finalizer, resources-finalizer.argocd.argoproj.io. Finalizers, in
Kubernetes, are used to trigger a pre-delete action on the managing controller. With this finalizer,
we tell the application controller that if we delete this application resource, the controller should
delete the rendered Kubernetes resources first. If we omit the finalizer, the application controller
will simply remove the application resource without deleting the rendered Kubernetes resources.

• Next, we must define the application source. This is where we specify the Git repository URL
and the path to the Helm chart:

source:

 path: helm-charts/charts/nginx/

 repoURL: https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

 targetRevision: HEAD

 helm:

 values: |-

 resources:

 limits:

 cpu: 50m

 memory: 128Mi

 requests:

 cpu: 50m

 memory: 128Mi

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/local-chart/application.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/local-chart/application.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/local-chart/application.yaml

Deploying a Helm chart from a Git repository 227

As you can see from the configuration, Argo CD will clone the repository (https://github.
com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm.
git) at the most recent commit (HEAD). Once cloned, it navigates to the helm-charts/
charts/nginx path, which contains an Nginx Helm chart.

• Here, we also specified a set of Helm values, setting the resource limits and requests under
the helm.values section. Values can also be provided by using the helm.parameters
setting, like so:

source:

 helm:

 parameters:

 - name: resources.limits.cpu

 value: 50m

 - name: resources.limits.memory

 value: 128Mi

This would be similar to passing the --set flag on the command line.

Finally, values can also be provided using the helm.valueFiles setting. We will describe
this use case in greater detail in the Deploying a Helm chart to multiple environments section.

• The final portion of the Application resource defines the destination and synchronization
(sync) policy:

destination:

 server: https://kubernetes.default.svc

 namespace: chapter10

syncPolicy:

 automated:

 prune: true

 selfHeal: true

destination defines the Kubernetes server API of the target cluster and the namespace
that resources should be deployed to. syncPolicy determines how the application should be
synchronized. In this context, sync means to apply, or update, the resources in the cluster with
those from the application source. Syncs can be done manually, but in this example, we have
selected to automate it so that Nginx is deployed as soon as the application resource is created.

Automating Helm with CD and GitOps228

Under the syncPolicy.automated section, several additional configurations can be
specified. The prune field is a Boolean that determines whether Kubernetes resources should
be deleted if they are removed from the source. The selfHeal setting instructs Argo CD to
ensure consistency between the desired state and the live state. If a resource is modified within
the Kubernetes cluster, selfHeal will cause Argo CD to revert the modification so that it
matches the source configuration.

Now that we understand the application resource for defining our Nginx application, we can install
this Application resource by using the kubectl apply command:

$ kubectl apply –f chapter10/local-chart/application.yaml -n
argo

The result creates the Application resource in the argo namespace, where Argo CD has visibility
to application resources.

Upon creating the application resource, you can see the deployment status by running the following
command:

$ kubectl get applications –n argo

NAME SYNC STATUS HEALTH STATUS

nginx Synced Healthy

SYNC STATUS shows whether or not the desired state has been synced with the live state, while
HEALTH STATUS shows whether or not the rollout has been completed or if the pods are still
starting up. It may take a moment for SYNC STATUS and HEALTH STATUS to reach these values
as the nginx chart and the associated resources are installed in the cluster. We can see the status
of the deployment using more traditional means – that is, by running the kubectl get pods
command in the chapter10 namespace:

$ kubectl get pods –n chapter10

NAME READY STATUS RESTARTS AGE

nginx-7bf8646cff-qjv9h 1/1 Running 0 2m5s

With Application reporting as synchronized and healthy, you have successfully deployed a Helm
chart from a Git repository using Argo CD! Let’s delete the application resource (which will also
remove the nginx pod from the chapter10 namespace):

$ kubectl delete –f chapter10/remote-registry/application.yaml

Before we depart from this topic, it should be noted that, as expected in a GitOps model, changes to
the nginx Helm chart in Git will automatically propagate to the Kubernetes environment. If you were
to update the nginx chart and publish a new commit to the Git repository for the particular target
branch, Argo CD would notice this change in the next polling interval and update the Kubernetes

Deploying an application from a remote Helm chart repository 229

namespace with the desired state, as defined in the repository. For faster synchronization, webhooks
can be configured on the Git repository to trigger an Argo CD sync in an event-driven fashion.
Information on configuring webhooks is described in the Argo CD documentation at https://
argo-cd.readthedocs.io/en/stable/operator-manual/webhook/.

Next, we will learn how to use Argo CD to deploy a Helm chart from a remote chart repository.

Deploying an application from a remote Helm chart
repository
When installing Helm charts, users often interact with remote repositories. Similarly, we can use Argo
CD to deploy an application from a specified Helm chart repository.

The following diagram shows the flow involved in deploying an application from a remote Helm chart
repository with Argo CD:

Figure 10.4 – Deploying an application from a remote Helm chart repository

First, Argo CD downloads the Helm chart configured in the Application resource. Then, it renders
the Helm chart and applies the manifests to the destination cluster and namespace.

We have provided an example Application resource in the Packt repository at chapter10/
remote-registry/application.yaml (https://github.com/PacktPublishing/
Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/remote-
registry/application.yaml). The resource is configured similarly to Application from
the previous section, but we can observe one key difference in the source section:

source:

 chart: nginx

 targetRevision: 9.7.6

 repoURL: https://raw.githubusercontent.com/bitnami/charts/
archive-full-index/bitnami

https://argo-cd.readthedocs.io/en/stable/operator-manual/webhook/
https://argo-cd.readthedocs.io/en/stable/operator-manual/webhook/
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/remote-registry/application.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/remote-registry/application.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/remote-registry/application.yaml

Automating Helm with CD and GitOps230

Here, instead of providing a Git repository, we provided the location of a remote Helm chart repository,
as well as the chart’s name and version. As you can see, this Application will instruct Argo CD to
deploy version 9.7.6 of the nginx chart from the Bitnami chart repository.

The process of deploying a Helm chart from a chart repository is the same as deploying from a
Git repository – simply apply the Application resource to the argo namespace. Feel free to
walk through the same steps provided in the previous section to deploy the application to the
chapter10 namespace.

Where the process changes slightly is when we talk about deploying a Helm chart to multiple
environments, a topic that we will cover in the next section.

Deploying a Helm chart to multiple environments
In the previous sections, we used Argo CD to deploy a Helm chart to a single environment (or
namespace). However, when deploying applications in the enterprise, you will often expect to
deploy across multiple different environments, achieving a process similar to what’s shown in the
following diagram:

Figure 10.5 – Deploying to multiple namespaces

You may want to deploy charts to different environments (separate namespaces or even separate
clusters) for a variety of reasons, including high availability or for deploying an application across
multiple stages of a pipeline, such as dev, test, and prod. Luckily, we can achieve this in Argo CD using
the ApplicationSet construct.

Deploying a Helm chart to multiple environments 231

Imagine that we have two separate namespaces – one for dev and another for prod. We could create
two separate Application resources, each targeting a separate namespace in the destination section:

• Dev would look as follows:

destination:

 server: https://kubernetes.default.svc

 namespace: dev

• Prod would be very similar, but we would specify prod in the namespace property:

destination:

 server: https://kubernetes.default.svc

 namespace: prod

Using two different Application resources – one for each environment – is a perfectly valid option
for approaching this type of deployment. However, Argo CD introduced ApplicationSet as a
method for wrapping multiple Application instances in a single resource, allowing you to define
multiple destinations without managing multiple resource YAML files.

An example of an ApplicationSet is provided in the Packt repository at chapter10/multiple-
envs/applicationset.yaml (https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm/blob/main/chapter10/multiple-envs/
applicationset.yaml). Let’s break down the different sections of this resource:

• The first component of an ApplicationSet is the generators section, which generates
parameters that are used later on to dynamically configure the application details, such as the
source and destination. There are many different types of generators, which can be explored in
greater detail in the Argo CD documentation at https://argocd-applicationset.
readthedocs.io/en/stable/Generators/. In our example, we used the list
generator, which allows a list of simple key-value pairs to be provided:

generators:

 - list:

 elements:

 - env: dev

 - env: prod

As you can see, two elements that define our different environments are specified – dev and
prod. We will reference these environments throughout the rest of ApplicationSet to
deploy the nginx chart to both stages of our deployment pipeline.

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/multiple-envs/applicationset.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/multiple-envs/applicationset.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/multiple-envs/applicationset.yaml
https://argocd-applicationset.readthedocs.io/en/stable/Generators/
https://argocd-applicationset.readthedocs.io/en/stable/Generators/

Automating Helm with CD and GitOps232

• Next, we must define the Application template. We start by providing a name that
ApplicationSet will inject into the generated Applications:

metadata:

 name: nginx-{{ env }}

The {{ env }} syntax denotes a placeholder that will be replaced by the env elements
described in the generators section. So, when we create ApplicationSet, we can expect
two different applications to be created: – nginx-dev and nginx-prod.

• Now that we have specified the names of the applications that will be created, we can configure
the sources. This will look similar to what we have seen in the previous sections:

source:

 path: chapter10/multiple-envs/nginx

 repoURL: https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

 targetRevision: HEAD

 helm:

 releaseName: nginx

 valueFiles:

 - values/common-values.yaml

 - values/{{ env }}/values.yaml

This source indicates that Argo CD will deploy the Helm chart located under chapter10/
multiple-envs/nginx at https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git. However, instead of deploying the
same configuration in each environment, we will apply slightly different values based on the
environment. This can be seen under the helm.valueFiles setting, which provides a
list of values files to be applied (similar to using the --values flag on the command line).
Regardless of the environment, we will always apply a common set of values defined in the
values/common-values.yaml file, but depending on the environment, we will also apply
either the values/dev/values.yaml file or the values/prod/values.yaml file.

These values files can be seen within the chapter10/multiple-envs/nginx/values
directory (https://github.com/PacktPublishing/Managing-Kubernetes-
Resources-using-Helm/tree/main/chapter10/multiple-envs/nginx/
values). Note that, since Argo CD has been configured to use the chapter10/multiple-
envs/nginx chart path, the values files must be located underneath this path. It is also
important to note that this method of applying values files is only applicable when deploying
a Helm chart from Git. When deploying from a remote Helm chart repository, values can be
provided using the helm.values or helm.parameters method, as described in the
Deploying a Helm chart from a Git repository section.

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm.git
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm.git
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter10/multiple-envs/nginx/values
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter10/multiple-envs/nginx/values
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter10/multiple-envs/nginx/values

Deploying a Helm chart to multiple environments 233

• Finally, we must define the destinations that Argo CD should deploy the resources to:

destination:

 server: https://kubernetes.default.svc

 namespace: chapter10-{{ env }}

This will deploy the Helm chart to the chapter10-dev and chapter10-prod namespaces.
In this example, we separated environments by namespace for simplicity, but you can also
instruct Argo CD to deploy to separate clusters by parameterizing the destination.server
section in a fashion similar to how we have parameterized the namespace.

Now that we know how ApplicationSet is created, let’s apply it to our Kubernetes cluster to
deploy our Helm chart across different environments. First, apply ApplicationSet located at
chapter10/multiple-envs/applicationset.yaml (https://github.com/
PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/
chapter10/multiple-envs/applicationset.yaml):

$ kubectl apply –f chapter10/multiple-envs/applicationset.yaml
-n argo

Shortly, we should see two different applications appear in the argo namespace:

$ kubectl get applications –n argo

NAME SYNC STATUS HEALTH STATUS

nginx-dev Synced Healthy

nginx-prod Synced Healthy

We can also observe the deployment running in our different environments:

$ kubectl get pods –n chapter10-dev

NAME READY STATUS RESTARTS AGE

nginx-6d948d7f48-kkr4j 1/1 Running 0 75s

$ kubectl get pods –n chapter10-prod

NAME READY STATUS RESTARTS AGE

nginx-6d948d7f48-76p22 1/1 Running 0 107s

nginx-6d948d7f48-bf76x 1/1 Running 0 107s

nginx-6d948d7f48-rcq4z 1/1 Running 0 107s

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/multiple-envs/applicationset.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/multiple-envs/applicationset.yaml
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/blob/main/chapter10/multiple-envs/applicationset.yaml

Automating Helm with CD and GitOps234

You can observe three different nginx pods in chapter10-prod because the values file under
chapter10/multiple-envs/nginx/values/prod/values.yaml specifies three replicas,
while the dev values file only specifies one.

If you were able to observe similar output in your minikube environment to those shown previously,
congratulations! You have successfully deployed a Helm chart to multiple environments in a GitOps
fashion with Argo CD.

Let’s conclude this chapter by cleaning up the environment.

Cleaning up
First, let’s remove the namespaces from this chapter and the Argo installation:

$ kubectl delete namespace chapter10-prod

$ kubectl delete namespace chapter10-dev

$ kubectl delete namespace chapter10

$ helm uninstall argo –n argo

$ kubectl delete namespace argo

Then, you can stop the minikube cluster with the minikube stop command.

Summary
CD and GitOps provide scalable methods for further abstracting the capabilities that Helm provides,
allowing deployments to be controlled by the contents of a Git repository or a remote chart repository.
In this chapter, we introduced the concepts of CI/CD and GitOps and explored them using Argo CD
as a solution to implementing these models in the context of Helm. Then, we learned how to install
Argo CD and how to create the Application and ApplicationSet resources, which are
primitives for enabling Argo CD deployments and synchronizing them with specified Helm charts
and values. Finally, we learned how to deploy a Helm chart across multiple different environments.

In the next chapter, we will explore another abstraction – the Helm operator.

Questions 235

Questions
Answer the following questions to test your knowledge of this chapter:

1. What is the difference between CI and CD?

2. What is the relationship between CD and GitOps?

3. What is the difference between an Argo CD Application and ApplicationSet?

4. What is the Argo CD equivalent of passing the --values flag on the command line?

5. What is the Argo CD equivalent of passing the --set flag on the command line?

6. What is an ApplicationSet generator? Why are generators useful when deploying to
multiple environments?

11
Using Helm with the

Operator Framework

One of the advantages of using Helm is the ability to declaratively define an application’s desired state.
With Helm, the desired state is managed with templates and Helm values, which, when provided
using the install or upgrade commands, apply the values to synchronize the live state in a
Kubernetes cluster. In previous chapters, this was performed by invoking those commands manually.
Most recently, in Chapter 10, Automating Helm with CD and GitOps, we used Argo CD as a method
of state synchronization.

Another way changes can be synchronized to a Kubernetes cluster is to use a controller that checks
periodically that the desired state matches the current configuration in the environment. If the state
does not match, the application can automatically modify the environment to match the desired state.
This controller is the foundation of applications and is referred to as a Kubernetes operator.

In this chapter, we will create a Helm-based operator that helps ensure that the desired state always
matches the live state of the cluster. If it does not, the operator will execute the appropriate Helm
commands to reconcile the state of the environment.

In this chapter, we will cover the following topics:

• Understanding Kubernetes operators

• Understanding the Guestbook operator control loop

• Using Helm to manage operators, Custom Resource Definitions (CRDs), and Custom
Resources (CRs)

• Cleaning up

Using Helm with the Operator Framework238

Technical requirements
For this chapter, you will need to have the following technologies installed on your local machine:

• minikube

• Helm

• kubectl

In addition to these tools, you should find the Packt repository containing resources associated
with the examples on GitHub at https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm. This repository will be referenced throughout this
chapter.

Understanding Kubernetes operators
One of the fundamental principles of Kubernetes is that the current state of resources within the
cluster matches the desired state, a process known as the control loop. The control loop is an ongoing,
non-terminating pattern of monitoring the state of the cluster through the use of controllers. Kubernetes
includes numerous controllers that are native to the platform, with examples ranging from admission
controllers that intercept requests made to the API server to replication controllers that ensure the
configuration of pod replicas.

As interest in Kubernetes began to grow, the combination of providing users with the ability to extend
the capabilities of the platform, as well as a way to provide more intelligence around managing the
life cycle of applications, led to the creation of a couple of important features to support Kubernetes
development. First, the introduction of CRDs enabled users the ability to extend the default Kubernetes
API in order to create and register new types of resources. Registering a new CRD creates a new
resource path on the Kubernetes API server. For example, registering a new CRD for an object type
called Guestbook provides the capabilities to interact with the Guestbook resource through the
Kubernetes API server. When using the Kubernetes CLI, kubectl get Guestbook can now
be used to view all Guestbook objects that are currently available. With this new capability realized,
developers could now create controllers of their own to monitor these types of CRs and manage the
lifecycle of applications through the use of CRDs.

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm

Understanding the Guestbook operator control loop 239

Another major feature that helped to shape the developer experience in Kubernetes included advances
in the types of applications deployed to Kubernetes. Instead of small and simple applications, more
complex and stateful applications were being deployed more frequently. Typically, these types of
advanced applications require a higher level of management and maintenance, such as day 2 activities
including backups, restorations, and upgrades. These tasks extend beyond the typical types of controllers
that are found natively in Kubernetes, as deep knowledge related to the application being managed
must be embedded within. This pattern of using a CR to manage applications and their components
is known as the Operator pattern. First coined by the software company CoreOS in 2016, operators
aim to capture the knowledge that a human operator would have for managing the lifecycle of an
application. Operators are packaged as normal containerized applications, deployed within pods, that
react on changes to the API against CRs.

Operators are commonly written using a framework called kubebuilder, which contains features that
simplify the creation of CRs and the interaction with a Kubernetes environment. Several additional
frameworks have since been created to further extend the capabilities to support operator development.
One such popular toolkit is the Operator Framework, which provides end users with the ability to
create operators using one of the following three technologies:

• Go

• Ansible

• Helm

Go-based operators leverage the Go programming language to implement control loop logic. Ansible-
based operators leverage the Ansible CLI tool and Ansible playbooks to manage the state of resources.
Ansible is a popular open source configuration management tool.

In this chapter, we will focus on Helm-based operators. Helm operators base their control loop logic
on Helm charts and a subset of features provided by the Helm CLI. As a result, they represent an easy
way for Helm users to implement their own operators.

With an understanding of operators, let’s continue by creating our own operator using Helm.

Understanding the Guestbook operator control loop
In this chapter, we will write a Helm-based operator that will be used to install the Guestbook Helm chart.
This chart can be found in the Packt repository at https://github.com/PacktPublishing/
Managing-Kubernetes-Resources-using-Helm/tree/main/helm-charts/
charts/guestbook.

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/helm-charts/charts/guestbook
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/helm-charts/charts/guestbook
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/helm-charts/charts/guestbook

Using Helm with the Operator Framework240

The following diagram demonstrates how the Guestbook operator will function once it has been
deployed:

Figure 11.1 – The Guestbook operator control loop

The Guestbook operator constantly watches for the creation, deletion, or modification of Guestbook
CRs. When a Guestbook CR is created, the operator will install the Guestbook Helm chart, and when
the CR is modified, it upgrades the release accordingly so that the state of the cluster matches the desired
intent as defined by the CR. Similarly, when the CR is deleted, the operator uninstalls the release.

With an understanding of how the operator’s control loop will function, let’s set up an environment
where the operator can be built and deployed.

Preparing a local development environment

In order to create a Helm operator, you will need the following CLI tools at a minimum:

• operator-sdk

• A container management tool, such as docker, podman, or buildah

Understanding the Guestbook operator control loop 241

The operator-sdk CLI is a toolkit used to help develop Kubernetes operators. It contains inherent
logic to simplify the operator development process. Under the hood, operator-sdk requires a
container management tool that it can use to build the operator image. The supported container
management tools are docker, podman, and buildah.

Installing the operator-sdk CLI is easy, as you can simply download a release from GitHub at
https://github.com/operator-framework/operator-sdk/releases. However, the
process used to install docker, podman, or buildah varies greatly depending on your operating
system; not to mention, Windows users will not be able to use the operator-sdk toolkit natively.

Fortunately, the minikube Virtual Machine (VM) can be leveraged as a working environment for
developers regardless of the host operating system since minikube is a Linux VM that also contains
the Docker CLI. In this section, we will install the operator-sdk toolkit onto minikube and use
the minikube VM as an environment to create the operator.

First, start the minikube VM:

$ minikube start

Once the VM has started, proceed by following these steps:

1. Access the VM by running the minikube ssh command:

$ minikube ssh

2. Once inside the VM, you need to download the operator-sdk CLI. This can be accomplished
using the curl command. Note that the operator-sdk version used during writing was
version v1.20.0.

To download this version of the operator-sdk CLI, run the following command:

$ curl –o operator-sdk –L https://github.com/operator-
framework/operator-sdk/releases/download/v1.20.0/
operator-sdk_linux_amd64

3. Once downloaded, you will need to change the permission of the operator-sdk binary to
be user-executable. Run the chmod command to make this modification:

$ chmod u+x operator-sdk

4. Next, move the operator-sdk binary to a location managed by the PATH variable, such
as /usr/local/bin. Because this operation requires root privileges, you will need to run
the mv command using sudo:

$ sudo mv operator-sdk /usr/local/bin

https://github.com/operator-framework/operator-sdk/releases

Using Helm with the Operator Framework242

5. Finally, verify your operator-sdk installation by running the operator-sdk version
command:

$ operator-sdk version

operator-sdk version: "v1.20.0", commit:
"deb3531ae20a5805b7ee30b71f13792b80bd49b1", kubernetes
version: "1.23", go version: "go1.17.9", GOOS: "linux",
GOARCH: "amd64"

6. As an additional step, you should also clone the Packt repository in your minikube VM since
we will need it later to build our Helm operator. Run the following commands to install git
and clone the repository in your VM (notice that we will also install make, which is necessary
for building our operator image later):

$ sudo apt update

$ sudo apt install git make

$ git clone https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

Now that you have a local development environment created in the minikube VM, let’s begin writing
the Guestbook operator. Note that an example of the operator code is located in the Packt repository
at https://github.com/PacktPublishing/Managing-Kubernetes-Resources-
using-Helm/tree/main/chapter11/guestbook-operator.

Scaffolding the operator file structure

Similar to Helm charts themselves, Helm operators built by the operator-sdk binary have a
specific file structure that must be adhered to. The file structure is explained in the following table:

File/folder Definition
Dockerfile Used to build the operator image
Makefile Provides a convenient set of targets for building the operator image and

deploying it to Kubernetes
PROJECT Provides operator-sdk metadata
config/ Contains Kubernetes resource manifests for CRDs, CRs, and the operator instance
helm-charts/ Contains the Helm charts that the operator is in charge of installing
watches.yaml Defines the CRs that the operator is in charge of monitoring

Table 11.1 – The operator-sdk file structure

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter11/guestbook-operator
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm/tree/main/chapter11/guestbook-operator

Understanding the Guestbook operator control loop 243

This file structure can be easily created using the operator-sdk init and operator-sdk
create api commands. Let’s walk through this process to create a Guestbook kind of a custom
API version, demo.example.com/v1alpha1:

1. First, create a new folder for the operator and cd inside the newly created directory:

$ mkdir guestbook-operator

$ cd guestbook-operator

2. Next, use the operator-sdk init command to initialize the project:

$ operator-sdk init --plugins helm --domain example.com

Notice the usage of the --plugins helm parameter. This specifies that our project is a
Helm operator and provides the necessary project scaffolding. The –domain example.
com parameter specifies the Kubernetes API group that will be used for the CR. However, the
command has not yet created the Guestbook CRD and control loop logic. This will be handled
in the next step.

3. Run the operator-sdk create api command to create the Guestbook CRD and
associated manifests:

$ operator-sdk create api --group demo --version v1alpha1
--kind Guestbook --helm-chart ../Managing-Kubernetes-
Resources-using-Helm/helm-charts/charts/guestbook

You might see a warning about RBAC rules, but this can safely be ignored for this example. In practice,
you should always ensure that the RBAC rules follow the principle of least privilege.

With the Guestbook operator successfully scaffolded, let’s build the operator and push it to a container
registry, where we will later pull the image for deployment.

Building the operator image

One of the files generated by operator-sdk was Makefile, which contains targets for building
your operator image and pushing it to a container registry. However, before we can build our image,
we need to have access to a container registry.

In Chapter 8, Publishing to a Helm Chart Repository, we used the GitHub container registry located at
ghcr.io to publish images. We will use the same registry for publishing our Guestbook operator.

In order to publish to ghcr.io, you need to have first created a Personal Access Token (PAT). If
you have already created one in Chapter 8, Publishing to a Helm Chart Repository, you do not need to
create a new one (unless it has expired or you have misplaced the token).

Using Helm with the Operator Framework244

However, if you do need to create a PAT, you can follow these steps:

1. Log into GitHub. Once you are logged in, from the upper-right corner of the page, select your
profile picture and click on Settings from the drop-down menu.

2. Click on Developer Settings and select Personal Account Token.

3. Click on the Generate New Token button to initiate the token creation process.

4. Enter a unique name for the token, such as Learn Helm.

5. Select the date the token will expire. It is a recommended practice to specify an expiration date
as it follows security best practices.

6. Select the scopes (permissions) granted to the token. The following scopes are required for
managing content within the container registry:

A. read:packages

B. write:packages

C. delete:packages

7. Click on the Generate Token button to create the token.

Be sure to copy the token before navigating away from the page. If you navigate away from the page
before noting the content of the token, it can be regenerated at any time. However, the previously
specified value will no longer be valid.

Once you have created your PAT and copied the access token, you can log into the ghcr.io registry
from within your minikube VM by using the docker login command. For the Username prompt,
provide your GitHub username, and for Password, paste the PAT token:

$ docker login ghcr.io

Username: <user>

Password: <Paste your PAT token here>

Once you have logged into the registry, you can continue by building and deploying your operator
image. To do this, we can use the make utility to run different Makefile targets:

1. First, we need to define the image name. The Makefile defaults the image name to
controller:latest. We can give a more descriptive name by setting the IMG environment
variable:

$ export IMG=ghcr.io/<GITHUB_USERNAME>/guestbook-
operator:1.0.0

Be sure to substitute your GitHub username when setting the IMG variable.

Understanding the Guestbook operator control loop 245

2. Next, we can begin the image build using the docker-build Makefile target:

$ make docker-build

If the build is successful, you will see the Successfully tagged message followed by the
container image name and tag. Additionally, you can use the docker images command
to verify the image was created:

$ docker images

REPOSITORY TAG

Ghcr.io/<GITHUB_USERNAME>/guestbook-
operator 1.0.0

3. Finally, we can push our image using the docker-push target:

$ make docker-push

. . .

1.0.0: digest: sha256:1f73c8f37afea7c7f4eabaa741d5505880b
5f1bda4de4fad15862acd7d16fb23 size: 1779

By default, your image will be private after you successfully push to ghcr.io. To avoid requiring
the need for specifying a Kubernetes pull secret to access the image, we can update the image settings
to make the image publicly available.

First, in GitHub, select your profile picture from the upper-right corner of the page, and choose
Your Profile. On the next screen, select the Packages tab at the top of the page. After selecting the
Packages tab, you should be able to see the guestbook-operator image (the guestbook image
from Chapter 8, Publishing to a Helm Chart Repository, is visible in the screenshot, too):

Figure 11.2 – The GitHub Packages page

Next, select the guestbook-operator package. On the far right of the screen, select Package
Settings, then update the Change Visibility setting to Public.

Using Helm with the Operator Framework246

If you were able to update your image’s visibility to Public, then you have successfully pushed your
image and can now access it without requiring credentials. Let’s continue by deploying your operator
to Kubernetes.

Deploying the Guestbook operator

Similar to building the operator, the deployment of our Guestbook operator can be performed using
a set of Makefile targets. The Makefile generated by operator-sdk contains four targets related
to the installation or removal of the operator:

• install: This installs CRDs onto the Kubernetes cluster. This target adds the Guestbook
API to the cluster.

• uninstall: This uninstalls CRDs from the Kubernetes cluster. This target removes the
Guestbook API from the cluster.

• deploy: This installs CRDs and deploys the Guestbook operator to the Kubernetes cluster.
We’ll use this target later for the deployment.

• undeploy: This undeploys (or removes) the CRDs and Guestbook operator instance from
the Kubernetes cluster.

Under the hood, each target uses kubectl and a configuration management tool called kustomize
to generate and apply manifests located under the config folder. Kustomize is a tool that, at a high
level, uses kustomization.yaml files that specify the Kubernetes manifests that will be applied.
Also, it adds patches and common configurations to each manifest, such as the target namespace and
resource names.

The contents of the config folder contents are shown in the following table:

Folder Definition
config/crd/ Contains the CRDs for extending the Kubernetes API. For our Guestbook

operator, there is only one CRD.
config/default/ Contains a parent kustomization.yaml file for applying CRD,

RBAC, and operator (also referred to as manager) resources.
config/manager/ Contains a deployment resource for creating the operator (or manager)

instance.
config/manifests/ A superset of the config/default/ folder. Here, config/

manifests applies CRD, RBAC, and operator resources, but it also
applies an example Guestbook CR and a scorecard, which is used for
testing the operator.

config/prometheus/ Contains a Prometheus ServiceMonitor resource for tracking
metrics. This is disabled by default but can be enabled in the
kustomization.yaml file located under config/default/.

Understanding the Guestbook operator control loop 247

config/rbac/ Contains Role, RoleBinding, and ServiceAccount resources.
These grant the operator permission to manage Guestbook resources.
They also create Guestbook editor and viewer roles for users throughout
the Kubernetes cluster.

config/samples/ Contains an example Guestbook manifest.
config/scorecard/ Contains manifests for testing the operator. They are unused by default.

Figure 11.4 – The contents of the config folder

When we run the make deploy command, Kustomize targets the kustomization.yaml file
from config/default/ to apply resources from the config/crd/, config/manager/,
and config/rbac/ directories. Then, when the operator is installed, we will apply the Guestbook
CR, which is located at config/samples/demo_v1alpha1_guestbook.yaml. Let’s take
a look at a snippet from the demo_v1alpha1_guestbook.yaml file:

apiVersion: demo.example.com/v1alpha1

kind: Guestbook

metadata:

 name: guestbook-sample

spec:

 # Default values copied from <project_dir>/helm-charts/
guestbook/values.yaml

 affinity: {}

 autoscaling:

 enabled: false

 maxReplicas: 100

 minReplicas: 1

 targetCPUUtilizationPercentage: 80

 env:

 - name: GET_HOSTS_FROM

 value: env

 - name: REDIS_LEADER_SERVICE_HOST

 value: redis-master

 - name: REDIS_FOLLOWER_SERVICE_HOST

 value: redis-replicas

 fullnameOverride: ""

 image:

 pullPolicy: IfNotPresent

Using Helm with the Operator Framework248

 repository: gcr.io/google_samples/gb-frontend

 tag: ""

Does the preceding YAML look familiar? Each of the entries under the spec stanza reference
default values from the Guestbook chart’s values.yaml file. This is how values are provided
when using a Helm operator. Rather than providing a values.yaml file, users write values in the
Guestbook CR. Then, when the resource is applied, the operator consumes the values and deploys
the application accordingly.

With a basic understanding of the operator’s config/ folder and Makefile targets, let’s deploy
the Guestbook operator by following these steps:

1. In order to deploy the Guestbook operator, we need to be authenticated to the Kubernetes cluster.
Because the minikube VM does not have kubectl installed, nor kubeconfig, which we
can use for authentication, it will be simpler to deploy the operator from your host machine.

Exit the minikube VM by running the following command:

$ exit

2. The resources we created in the minikube VM are also located in the Packt repository under the
chapter11/guestbook-operator/ folder. You can clone this repository and navigate
to the guestbook-operator folder by running the following commands:

$ git clone https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

$ cd Managing-Kubernetes-Resources-using-Helm/chapter11/
guestbook-operator

The files from the Packt repository are the same as the ones you created in the minikube VM
with one exception. As you might recall from previous chapters, the Guestbook Helm chart
contains hooks for backing up and restoring the Redis database. These hooks require the operator
to have permission to manage the Job and PersistentVolumeClaim resources. Because
the role generated by operator-sdk does not include these resources, we added them at
the end of the role definition located at chapter11/guestbook-operator/config/
rbac/role.yaml. Here are the permissions that we added:

- apiGroups:

 - ""

 resources:

 - persistentvolumeclaims

 verbs:

 - create

 - delete

Understanding the Guestbook operator control loop 249

 - get

 - list

 - patch

 - update

 - watch

- apiGroups:

 - batch

 resources:

 - jobs

 verbs:

 - create

 - delete

 - get

 - list

 - patch

 - update

 - watch

3. Next, we will use the make command to deploy the Guestbook CRD and operator to the
Kubernetes cluster. Note that Windows users might need to install make first, which can be
done by using the Chocolatey package manager:

$ choco install make

Proceed with the operator deployment by setting the IMG environment variable and running
the following make command:

$ export IMG=ghcr.io/<GITHUB_USERNAME>/guestbook-
operator:1.0.0

$ make deploy

4. The operator was installed in a namespace called guestbook-operator-system. Verify
that the pod was deployed successfully in this namespace:

$ kubectl get pods –n guestbook-operator-system

NAME READY STATUS

guestbook-operator-controller-manager... 2/2 Running

Now that the operator has been deployed, let’s use it to install the Guestbook Helm chart.

Using Helm with the Operator Framework250

Deploying the Guestbook application

When using Helm normally as a standalone CLI tool, you would install a Helm chart by running the
helm install command. With a Helm operator, you can install a Helm chart by creating a CR.

First, create a new namespace for our deployment:

$ kubectl create namespace chapter11

Then, using the CR located in the Packt repository at chapter11/guestbook-operator/
config/samples/demo_v1alpha1_guestbook.yaml, install the Guestbook Helm chart:

$ kubectl apply –f chapter11/guestbook-operator/config/samples/
demo_v1alpha1_guestbook.yaml -n chapter11

Once the installation is complete, you’ll see each pod in the ready state:

$ kubectl get pods –n chapter11

NAME READY STATUS

guestbook-sample-76d48ccddb-dfrkr 1/1 Running

redis-master-0 1/1 Running

redis-replicas-0 1/1 Running

redis-replicas-1 1/1 Running

redis-replicas-2 1/1 Running

When you created the CR, the operator executed the helm install command against the Guestbook
Helm chart. You can confirm the release was created by running helm list:

$ helm list –n chapter11

NAME NAMESPACE REVISION

guestbook-sample chapter11 1

Upgrades are performed by reapplying the CR with a different set of values. A modified CR is located in
the Packt repository at chapter11/guestbook-operator/config/samples/upgrade-
example.yaml. In this file, the replicaCount value has been changed to 2, as opposed to 1
in the original CR.

Apply the updated CR by running the following command:

$ kubectl apply –f chapter11/guestbook-operator/config/samples/
upgrade-example.yaml -n chapter11

This modification of the Guestbook CR causes the operator to trigger helm upgrade against
the guestbook-sample release. As you might recall from Chapter 7, Helm Lifecycle Hooks, the

Understanding the Guestbook operator control loop 251

Guestbook chart contains an upgrade hook that initiates a Redis backup. If you watch the pods in
the chapter11 namespace after modifying the CR, you will see the backup job begin, and then
you will shortly see two Guestbook pods appear. You will also notice that the revision number of the
release increased to 2:

$ helm list –n chapter11

NAME NAMESPACE REVISION

guestbook-sample chapter11 2

Although the revision number increased to 2, as of writing, one limitation of Helm operators is that
you cannot initiate a rollback to a previous version as you can do when using the CLI. If you attempt
to run helm history against the guestbook-sample release, you will notice that only the
current revision is available in the release history:

$ helm history guestbook-sample –n chapter11

REVISION UPDATED STATUS CHART

2 Sun May 8 22:44:41 2022 deployed guestbook-0.1.0

This is an important difference between using Helm regularly with the CLI and using Helm as an
operator. Because the release history is not retained, Helm operators do not allow you to perform
explicit rollbacks. However, helm rollback will be run implicitly in situations where upgrades
fail. This would also trigger any rollback hooks that might be defined in the chart.

Although Helm operators do not retain the release history, one area where they excel is in synchronizing
the desired and live states of an application. This is because the operator constantly watches the state
of the Kubernetes environment and ensures that the application is always configured to match the
CR. In other words, if one of the Guestbook application’s resources has been modified, the operator
will immediately revert the change to synchronize it with the configuration defined within the CR.
You can see this in action by modifying one of the live resources. As an example, we will change the
Guestbook deployment’s replica count from 2 to 3 and watch the operator revert this change back to
2 immediately to resync the state to match the CR. Run the following kubectl patch command
to change the replica count on the deployment from 2 to 3:

$ kubectl patch deployment guestbook-sample –p
'{"spec":{"replicas":3}}' -n chapter11

Normally, this would create an additional Guestbook pod replica. However, because the Guestbook
CR currently defines only 2 replicas, the operator quickly changes the replica count back to 2 and
terminates the additional pod that was created. If you actually wanted to increase the replica count
to 3, you would need to update the replicaCount value on the CR. This process provides the
advantage of ensuring the desired state matches the live state at all times.

Using Helm with the Operator Framework252

Uninstalling releases created by the Helm operator is as simple as removing the CR. Delete the
guestbook-sample CR to uninstall the release:

$ kubectl delete –f chapter11/guestbook-operator/config/
samples/demo_v1alpha1_guestbook.yaml -n chapter11

You can also remove the Guestbook operator and its resources since we will not need them in the
next section. You can do this by running another make command:

$ make undeploy

In general, you should always make sure that you delete the CR first before deleting the operator. If
you delete the operator before the CR, then the operator will not be able to automatically run helm
uninstall, and you would have to run it manually from the command line.

Over the course of this chapter, you created a Helm operator and learned how to install a Helm chart
using an operator-based approach. In the next section, we will continue our discussion on operators
by investigating how they can be managed using Helm.

Using Helm to manage operators, CRDs, and CRs
In this chapter, we installed the Guestbook operator and CRD by using the Makefile instance
generated by operator-sdk. Then, we installed a Guestbook CR using kubectl apply. While
this is an acceptable way of creating these resources, we could also install the operator, CRD, and CR
by using Helm charts to provide a more repeatable solution for installing and managing an operator.

Helm allows you to create CRDs by adding them to a directory called crds/ in your Helm chart.
Helm creates CRDs before any of the other resources defined under the templates/ folder, making
it simpler to install applications such as operators that depend on CRDs.

The following file structure depicts a Helm chart that could be used to install the Guestbook operator:

guestbook-operator/

 Chart.yaml

 crds/

 guestbooks_crd.yaml

 templates/

 deployment.yaml

 role_binding.yaml

 role.yaml

 service_account.yaml

 values.yaml

Cleaning up 253

Upon installation, this Helm chart will first install the Guestbook CRD. If the CRD is already present
in the cluster, it will skip the CRD creation and go straight into installing the templates. Note that
while CRDs can be convenient to include in a Helm chart, there are a couple of limitations to be
aware of. First, Helm does not allow CRDs to contain any Go templating, so CRDs do not benefit
from parameterization as opposed to typical resources. Also, CRDs cannot be upgraded, rolled back,
or deleted. Finally, including CRDs in your chart would require the user to have elevated cluster-level
privileges within the Kubernetes cluster. Often, it is administrators who perform operator installations,
so this is likely to be an acceptable approach.

The Helm chart that we described earlier could be used to install the Guestbook operator, but this
is only half of the equation, as end users must still be able to create CRs that deploy the Guestbook
application. To address this limitation, you could create a separate Helm chart that is used for templating
a Guestbook CR. An example layout for this type of Helm chart is shown in the following file structure:

guestbook/

 Chart.yaml

 templates/

 Guestbook.yaml

 values.yaml

Unlike CRDs, CRs underneath the templates/ folder benefit from Go templating and lifecycle
management, as do all other resources. This methodology provides the most value when the CR
contains complex fields or when other resources must be installed alongside the CR. You would also
be able to manage the lifecycle of your CR with this method, and you would also be able to maintain
a history of revisions.

However, users would need to be given permission to install Guestbook CRs, since this permission
would not be included in Kubernetes by default. These permissions can be easily added by applying
the guestbook_editor_role.yaml file under the operator’s config/rbac/ folder. Then,
you can create a RoleBinding resource to assign the editor role to the appropriate users or groups.

Now that you have an understanding of how operators, CRDs, and CRs can be managed with Helm,
let’s close out the chapter by cleaning up the Kubernetes environment.

Cleaning up
First, delete the chapter11 namespace:

$ kubectl delete namespace chapter11

Finally, run the minikube stop command to stop your minikube VM.

Using Helm with the Operator Framework254

Summary
Operators are important for ensuring that the desired state always matches the live state. Such a feat
allows users to more easily maintain a source of truth for resource configuration. Users can leverage
a Helm operator to provide this type of resource reconciliation, and it is easy to get started because
it uses Helm charts as its deployment mechanism. When a CR is created, the Helm operator installs
the associated Helm chart to create a new release. Subsequent upgrades are performed when the CR
is modified, and the release is uninstalled when the CR has been deleted.

To manage the operator, cluster administrators can create a separate Helm chart for creating the
operator’s resources and CRDs. Also, end users can create a separate Helm chart for creating CRs
and other related resources.

In the next chapter, we will discuss best practices and topics around security within the Helm ecosystem.

Further reading
• To learn more about operators and their origins, check out the Kubernetes documentation at

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/.

• To discover other operators that have been developed throughout the community, check out
OperatorHub at https://operatorhub.io or the Operators section of ArtifactHub at
https://artifacthub.io.

Questions
1. What is an operator? How does an operator work at a high level?

2. What is the difference between installing a Helm chart with the Helm CLI versus a Helm operator?

3. What toolkit can you use to create Helm operators?

4. How does the install, upgrade, rollback, and uninstall hooks function with a
Helm operator?

5. What is the purpose of the crds/ folder in a Helm chart?

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://operatorhub.io
https://artifacthub.io

12
Helm Security Considerations

As you have likely come to realize throughout this book, Helm is a powerful tool that makes deploying
applications on Kubernetes simple and efficient. With that said, we need to ensure that we do not
lose sight of security best practices when leveraging Helm. Luckily, Helm provides several ways to
incorporate good security practices into everyday usage in ways that are simple to achieve, from the
moment the Helm CLI is downloaded to the moment a Helm chart is installed into a Kubernetes cluster.

In this chapter, we will cover the following topics:

• Data provenance and integrity

• Developing secure and stable Helm charts

• Configuring RBAC rules

Technical requirements
This chapter will make use of the following technologies:

• minikube

• kubectl

• helm

• gpg (GNU Privacy Guard)

You learned how to install and configure the minikube, kubectl, and helm command-line
interfaces (CLIs) in Chapter 2, Preparing a Kubernetes and Helm Environment.

We will also leverage the guestbook chart from the Packt repository located at https://github.
com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm for an

https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm
https://github.com/PacktPublishing/Managing-Kubernetes-Resources-using-Helm

Helm Security Considerations256

exercise later in this chapter. If you have not already cloned the repository, you can do so with the
following command:

$ git clone https://github.com/PacktPublishing/Managing-
Kubernetes-Resources-using-Helm.git

Let’s begin by discussing data provenance and integrity.

Data provenance and integrity
When working with any kind of data, two often-overlooked questions should be considered:

• Does the data come from a reliable source?

• Does the data contain all of the contents that you expected it to?

The first question relates to the topic of data provenance. Data provenance is about determining the
origin of data and determining where the data originated from.

The second question refers to the topic of data integrity. Data integrity is about determining whether
the contents you received from a remote location represents what you expected to receive. It helps
determine whether data was tampered with as it was sent across the wire.

Both data provenance and data integrity can be verified using a concept called digital signatures.
An author can create a unique signature based on cryptography to sign data, and the consumer of
that data can use cryptographic tools to verify the authenticity of that signature. If the authenticity is
verified, then the consumer is assured that the data originates from the expected source and was not
tampered with as it was transferred.

Authors can create a digital signature using a variety of tools. One such method is by using Pretty
Good Privacy (PGP). PGP, in this context, refers to OpenPGP, which is a set of standards based on
encryption. PGP focuses on establishing asymmetric encryption, which is based on the use of two
different keys – private and public.

Private keys are meant to be kept secret, while public keys are designed to be shared. In PGP, the private
key is used to encrypt data, while the public key is used by consumers to decrypt that data. The PGP
key pair is often created using a tool called GPG, which is an open source tool that implements the
OpenPGP standard.

To begin working with PGP, the first step is to create the key pair, which will generate a set of public
and private keys. Once the PGP key pair has been created, the author can use GPG to sign the data.
When data has been signed, GPG performs the following steps in the background:

1. A hash is calculated based on the contents of the data. The output is a fixed-length string called
the message digest.

2. The message digest is encrypted using the author’s private key. The output is the digital signature.

Data provenance and integrity 257

To verify the signature, consumers must use the author’s public key to decrypt it. This verification
can also be performed using GPG.

Digital signatures play a role in Helm in two ways:

• First, each Helm binary has an accompanying digital signature that’s owned by one of the
Helm maintainers. This signature can be used to verify the origin of the download, as well as
its integrity.

• Second, Helm charts can also be digitally signed so that they benefit from the same form of
verifications. Authors of Helm charts can sign the chart during packaging, and the chart users
can verify the chart’s authenticity by using the author’s public key.

Now that you understand how data provenance and integrity come into play concerning digital
signatures, in the next section, you will create a GPG key pair on your local machine that will be used
to elaborate on the previously described concepts.

Creating a GPG key pair

To create a key pair, you must have GPG installed on your local machine. Use the following instructions
as a guide to installing GPG on your respective machine. Note that this chapter is based on gpg
version 2.3.6:

• For Windows, you can use the Chocolatey package manager:

> choco install gnupg

You can also download the installer for Windows from https://gpg4win.org/
download.html.

• For macOS, you can use the Homebrew package manager by using the following command:

$ brew install gpg

You can also download the macOS-based installer from https://sourceforge.
net/p/gpgosx/docu/Download/.

• For Debian-based Linux distributions, you can use the apt package manager:

$ sudo apt install gnupg

• For RPM-based Linux distributions, you can use the dnf package manager:

$ sudo dnf install gnupg

Once you have installed GPG, you can create your own GPG key pair, which we will use throughout
our discussion on data provenance and integrity.

https://gpg4win.org/download.html
https://gpg4win.org/download.html
https://sourceforge.net/p/gpgosx/docu/Download/
https://sourceforge.net/p/gpgosx/docu/Download/

Helm Security Considerations258

Follow these steps to configure your key pair:

1. First, we need to begin the generation process by running the gpg --full-generate-
key command:

$ gpg --full-generate-key

2. For the Please select what kind of key you want prompt, select (1) RSA
and RSA:

Please select what kind of key you want:

 (1) RSA and RSA

 (2) DSA and Elgamal

 (3) DSA (sign only)

 (4) RSA (sign only)

 (9) ECC (sign and encrypt) *default*

 (10) ECC (sign only)

 (14) Existing key from card

Your selection? 1

The reason we are using RSA instead of the default option (ECC) is that ECC is not
supported by the crypto library used in Helm’s source code.

3. Next, you will be prompted to enter the key size. For this example, we can simply select the
default, so continue by pressing the Enter key:

RSA keys may be between 1024 and 4096 bits long.

What keysize do you want? (3072) <enter>

Requested keysize is 3072 bits

4. After you enter your key size, you will be asked how long the key should be valid. Since this
key will be used solely to run through the examples, we recommend setting a short expiration,
such as 1 week (1w):

Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

Key is valid for? (0) 1w

Key expires at Sun May 22 12:26:09 2022 EDT

Is this correct? (y/N) y

Data provenance and integrity 259

5. Now, you will be prompted for your name and email address. These will be used to identify
you as the owner of the key pair and will be the name and email address displayed by those
who receive your public key. You will also be prompted to provide a comment, which you can
simply leave blank:

GnuPG needs to construct a user ID to identify your key.

Real name: John Doe

Email address: jdoe@example.com

Comment: <enter>

You selected this USER-ID:

 "John Doe <jdoe@example.com>"

6. Press the O key to continue.

7. Finally, you will be prompted to enter your private key passphrase. Providing a strong passphrase
is essential for protecting your identity in the event your private key is stolen. This is because
it must be provided each time you attempt to access your key.

To keep our example simple, we will create an empty string passphrase to avoid passphrase
prompts. While this is acceptable in this demonstration, you should protect any private key
you intend to use in a real-world situation with a strong passphrase.

To continue, simply press Enter to submit an empty passphrase. When prompted, select
<Yes, protection is not needed>.

Once your GPG key pair has been created, you will see an output similar to the following:

pub rsa3072 2022-05-15 [SC] [expires: 2022-05-22]

 D2557B1EDD57BBC41A5D4DA7161DADB1C5AC21B5

uid John Doe <jdoe@example.com>

sub rsa3072 2022-05-15 [E] [expires: 2022-05-22]

The preceding output displays information about the public (pub) and private (sub) keys, as well as
the fingerprint of the public key (the second line of the output). The fingerprint is a unique identifier
that’s used to identify you as the owner of that key. The third line, beginning with uid, displays the
name and email address that you entered when generating the GPG key pair.

With your key pair now created, let’s continue to the next section to learn how a Helm binary can
be verified.

Verifying Helm downloads
As discussed in Chapter 2, Preparing a Kubernetes and Helm Environment, one of the ways Helm can
be installed is by downloading an archive from GitHub. These archives can be installed from Helm’s
GitHub releases page (https://github.com/helm/helm/releases) by selecting one of
the links shown in the following screenshot:

https://github.com/helm/helm/releases

Helm Security Considerations260

Figure 12.1 – The Installation and Upgrading section of Helm’s GitHub releases page

At the bottom of the preceding screenshot, you will notice a paragraph explaining that the release
was signed. Each Helm release is signed by a Helm maintainer and can be verified against the digital
signature that corresponds to the downloaded release. Each of the signatures is located under the
Assets section, as shown here:

Figure 12.2 – The Assets section of Helm’s GitHub releases page

Data provenance and integrity 261

To verify the provenance and integrity of a Helm download, in addition to the binary itself, you should
also download the corresponding .asc file. Note that sha256 files are used to verify the integrity
only. In this example, we will download the .tar.gz.asc file, which verifies both provenance
and integrity.

Let’s demonstrate how a Helm release can be verified. First, we should download a Helm archive,
along with its corresponding .asc file:

1. Download a Helm archive that corresponds with your operating system. For this example,
we will use version 3.8.2. If you are running an AMD64-based Linux system, the version for
this distribution can be downloaded from the GitHub release page or by using the following
curl command:

$ curl -LO https://get.helm.sh/helm-v3.8.2-linux-amd64.
tar.gz

2. Next, download the.asc file that corresponds with your operating system. When running an
AMD64-based Linux system, helm-v3.8.2-linux-amd64.tar.gz.asc would be the
resulting file that would be downloaded. You can download this file from the GitHub release
page or by using the following curl command:

$ curl -LO https://github.com/helm/helm/releases/
download/v3.8.2/helm-v3.8.2-linux-amd64.tar.gz.asc

Once both files have been downloaded, you should see the two files located within the same directory
on the command line:

$ ls –l

helm-v3.8.2-linux-amd64.tar.gz

helm-v3.8.2-linux-amd64.tar.gz.asc

The next step involves importing the Helm maintainer’s public key to your local GPG keyring.
This allows you to decrypt the digital signature contained in the .asc file to verify the provenance
and integrity of your downloaded binary. GPG public keys are saved in public key servers such as
keyserver.ubuntu.com and pgp.mit.edu. As such, we can use the gpg --recv-key
command to download the maintainer’s key from a public key server.

Let’s import the maintainer’s public key and continue with the verification process:

1. First, recall the maintainer’s public key fingerprint from Figure 12.1:

672C657BE06B4B30969C4A57461449C25E36B98E

Helm Security Considerations262

2. Use the gpg --recv-key command to download and import the key into your local keychain:

$ gpg --recv-key 672C657BE06B4B30969C4A57461449C25E36B98E

gpg: key 461449C25E36B98E: public key "Matthew Farina
<matt@mattfarina.com>" imported

gpg: Total number processed: 1

gpg: imported: 1

3. Now that the public key has been imported, you can verify the Helm release by using the
--verify subcommand of GPG. This command has the gpg --verify <signature>
<data> syntax:

$ gpg --verify helm-v3.8.2-linux-amd64.tar.gz.asc helm-
v3.8.2-linux-amd64.tar.gz

This command decrypts the digital signature contained in the .asc file. If it is successful, it
means that the Helm download (the file ending in .tar.gz) was signed by the person you
expected (Matt Farina for this release) and that the download was not modified or altered in
any way. A successful output looks similar to the following:

gpg: Signature made Wed Apr 13 14:00:32 2022 EDT

gpg: using RSA key
711F28D510E1E0BCBD5F6BFE9436E80BFBA46909

gpg: Good signature from "Matthew Farina <matt@
mattfarina.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted
signature!

gpg: There is no indication that the signature
belongs to the owner.

Primary key fingerprint: 672C 657B E06B 4B30 969C 4A57
4614 49C2 5E36 B98E

 Subkey fingerprint: 711F 28D5 10E1 E0BC BD5F 6BFE
9436 E80B FBA4 6909

Upon further inspection of this output, you may notice the WARNING message, indicating that the
key was not certified, which may lead you to question whether or not the verification was successful.
In this case, the verification was indeed successful, but you have not certified the maintainer’s key
yet, so GPG returns this warning.

Data provenance and integrity 263

The This key is not certified message is normally not an issue, but if you would like to
ensure this warning does not appear in the future, you can follow these steps to certify the maintainer’s
public key:

1. Check that the public key’s fingerprint (also referred to as the primary key from the gpg –
verify output) matches the fingerprint displayed on the Helm releases page. As you will
recall from Figure 12.1, the fingerprint was displayed, as shown here:

This release was signed with 672C 657B E06B 4B30 969C
4A57 4614 49C2 5E36 B98E and can be found at @mattfarina
keybase account.

2. Because the key we imported matches the fingerprint displayed on GitHub, we know that
we can trust this key. Trust can be associated with this key by using the gpg --sign-key
subcommand:

$ gpg --sign-key 672C657BE06B4B30969C4A57461449C25E36B98E

In the Really sign? prompt, enter y.

Now that you have signed the maintainer’s public key, the key has been certified. The next time you
perform a verification with this key, you should no longer see the warning message:

$ gpg --verify helm-v3.8.2-linux-amd64.tar.gz.asc helm-v3.8.2-
linux-amd64.tar.gz

gpg: assuming signed data in 'helm-v3.8.2-linux-amd64.tar.gz'

gpg: Signature made Wed Apr 13 14:00:32 2022 EDT

gpg: using RSA key
711F28D510E1E0BCBD5F6BFE9436E80BFBA46909

gpg: Good signature from "Matthew Farina <matt@mattfarina.com>"
[full]

Digital signatures also play a role in signing and verifying Helm charts. We will explore this topic in
the next section.

Signing and verifying Helm charts

Similar to how the Helm maintainers sign releases, you can sign your Helm charts so that users can
verify its origin as well as confirm it contains the expected content. To sign a chart, you must have a
GPG key pair present on your local workstation (we created a GPG key pair earlier in the Creating a
GPG key pair section).

Helm Security Considerations264

There is one important caveat to note before we start signing charts. If you are using GPG version 2
or greater, you must export your public and secret keyrings to a legacy format. Early versions of GPG
stored keyrings in the .gpg file format, which is the format that Helm expects your keyring to be in
(at the time of writing). Newer versions of GPG store keyrings in the .kbx file format, which is not
compatible at the time of writing.

Luckily, we can export our keys in the .gpg format by following these steps:

1. First, find your GPG version by running the following command:

$ gpg --version

gpg (GnuPG) 2.3.6

libgcrypt 1.10.1

Copyright (C) 2021 Free Software Foundation, Inc.

2. If your GPG version is 2 or greater, export your public and secret keyrings using the gpg
--export and gpg --export-secret-keys commands:

$ gpg --export > ~/.gnupg/pubring.gpg

$ gpg --export-secret-keys > ~/.gnupg/secring.gpg

Once your keyrings have been exported, you will be able to sign your charts using the helm package
command. The helm package command provides three key flags that allow you to sign and
package charts:

• --sign: This allows you to sign a chart using a PGP private key.

• --key: The name of the key to use when signing.

• --keyring: The location of the keyring containing the PGP private key.

Let’s run the helm package command to sign the guestbook Helm chart from the Packt repository:

$ helm package --sign --key <key_name> --keyring ~/.gnupg/
secring.gpg helm-charts/charts/guestbook

The <key_name> placeholder refers to either the email, name, or fingerprint associated with the
desired key. These details can be found by using the gpg --list-keys command.

If the helm package command is successful, you will see the following files displayed in the
current directory:

guestbook-0.1.0.tgz

guestbook-0.1.0.tgz.prov

Data provenance and integrity 265

The guestbook-0.1.0.tgz file is the archive that contains the Helm chart. This file is always
created by helm package, whether you are signing the chart or not.

The guestbook-0.1.0.tgz.prov file is called a provenance file. The provenance file contains
a provenance record, which contains the following:

• The chart metadata from the file

• The sha256 hash of the guestbook-0.1.0.tgz file

• The PGP digital signature

Helm chart consumers leverage provenance files to verify the data provenance and integrity of the chart
that they have downloaded. So, chart developers should be sure to publish both the .tgz archive as
well as the .tgz.prov provenance file to their Helm chart repository.

While you have successfully signed the guestbook chart and have created the .tgz.prov file, it is
not quite enough for users to verify the chart, as they still need to access your public key to decrypt
your signature. You can make this key available for users by publishing it to the PGP key servers with
the gpg --send-key command:

$ gpg --send-key <key_name>

End users can then download and import this key by using the gpg --recv-key command:

$ gpg --recv-key <key_name>

Once a user has imported your public key (and exported it to the ~/.gnupg/pubring.gpg
keyring, as shown earlier in this section), they can verify your Helm chart by using the helm
verify command, provided both the .tgz chart archive and .tgz.prov provenance file have
been downloaded to the same directory:

$ helm verify --keyring ~/.gnupg/pubring.gpg guestbook-
0.1.0.tgz

Signed by: John Doe <jdoe@example.com>

Using Key With Fingerprint:
D2557B1EDD57BBC41A5D4DA7161DADB1C5AC21B5

Chart Hash Verified:
sha256:c8089c7748bb0c8102894a8d70e641010b90abe9bb45962a
53468eacfbaf6731

Helm Security Considerations266

If verification is successful, you will see that the signer, the signer’s public key, and the chart have
been verified. Otherwise, an error will be returned. The verification could fail for a variety of reasons,
including the following:

• The .tgz and .tgz.prov files are not in the same directory.

• The .tgz or .tgz.prov files are corrupt.

• The file hashes do not match, indicating a loss of integrity.

• The public key used to decrypt the signature does not match the private key originally used
to encrypt it.

The helm verify command is designed to be run on locally downloaded charts, so users may
find it better to leverage the helm install --verify command instead, which performs the
verification and installation in a single command, assuming that the .tgz and .tgz.prov files can
both be downloaded from a chart repository.

The following command describes how the helm install --verify command can be used:

$ helm install guestbook <chart_repo>/guestbook --verify
--keyring ~/.gnupg/pubring.gpg

By using the methodologies described in this section, chart developers and consumers can be assured
that the content is sourced from a trusted origin and has been unaltered.

With an understanding of how data provenance and integrity play a role in Helm, let’s continue
discussing Helm security considerations by moving on to our next topic – security concerning Helm
charts and Helm chart development.

Developing secure and stable Helm charts
While provenance and integrity play a major role in the security of Helm, they are not the only concerns
you need to consider. During the development process, chart developers should ensure that they are
adhering to best practices around security to prevent vulnerabilities from being introduced when a
user installs their chart into a Kubernetes cluster. In this section, we will discuss many of the concerns
surrounding security as it relates to Helm chart development and what you, as a developer, can do to
write Helm charts with security as a priority.

We will begin by discussing the security around any container images that your Helm chart may reference.

Using secure images

Since the goal of Helm (and Kubernetes) is to deploy container images, the image itself presents
several areas of consideration concerning security. To start, chart developers should be aware of the
differences between image tags and image digests.

Developing secure and stable Helm charts 267

A tag is a human-readable reference to a given image and provides both developers and consumers
with an easy way to reference an image. However, tags can present a security concern as there are no
guarantees that the contents of a given tag will always remain the same. The image owner may choose
to push an updated image using the same tag, which would result in a different underlying image being
executed at runtime (even though the tag is the same). Performing these actions against the same tag
introduces the possibility of regressions, which can cause unexpected adverse effects for end users.
Instead of referencing an image by tag, images can also be referenced by digest. An image digest is
a computed SHA-256 value of an image that not only provides an immutable identifier to an exact
image but also allows for the container runtime to verify the integrity of the image that is retrieved
from a remote registry. This removes the risk of deploying an image that contains an accidental
regression against a given tag and can also remove the risks of a man-in-the-middle attack, where
the tag’s contents are modified with malicious intent.

As an example, an image referenced as quay.io/bitnami/redis:5.0.9 in
a chart template can be referenced by a digest as quay.io/bitnami/redis@
sha256:70b816f2127afb5d4af7ec9d6e8636b2f0f973a3cd8dda7032f9dcffa38ba11f.
Notice that instead of specifying the name of a tag after the name of the image, the SHA-256 digest
is explicitly specified. This assures that the image content will not change over time, even if the tag
changes, thus strengthening your security posture.

As time progresses, a tag or a digest may become unsafe for deployment, as vulnerabilities may
eventually be found in the underlying packages or base components. There are many different ways to
determine whether there are any vulnerabilities associated with a given image. One way is to leverage
the native capabilities of the registry that the image belongs to. Many different image registry solutions
contain capabilities around image vulnerability scanning that can help provide insight as to when an
image is vulnerable.

The Quay container registry, for example, can automatically scan images at specified intervals to
determine vulnerabilities that may be present within a given image. The Nexus and Artifactory
container registries are also examples of container registries that have similar capabilities. Outside
of native scanning capabilities provided by container registries, other tools can be leveraged, such as
Vuls and OpenSCAP. When your image registry or standalone scanning tool reports that an image
is vulnerable, you should immediately update your chart’s image to a newer version, if available, to
prevent vulnerabilities from being introduced to your users’ Kubernetes clusters.

To help simplify the process of updating the container image, you can develop a regular cadence
where image updates are checked. This helps prevent you from getting to a point where your target
image contains vulnerabilities that make it unfit for deployment. Many teams and organizations
also restrict the source of images to trusted registries to reduce the potential of running images that
do contain vulnerabilities. This setting can be configured at the container runtime level or within
policies applied to a Kubernetes cluster. The specific location and configurations vary based on the
specific implementation(s).

Helm Security Considerations268

Apart from image vulnerability scanning and content sourcing, you should also avoid deploying
images that run as root or privileged. Running containers as the root user (UID 0) is dangerous, as
the process would also have root access to the underlying host if it can break out of the container.
Your application likely does not need the level of permission that root provides, so you should run
the container as a non-root user instead to limit its available permissions.

While running a container as root is dangerous, due to the process isolation that containers provide, it
does not quite grant all available Linux capabilities by default. As a result, some users, often mistakenly,
will further escalate permissions by running containers as privileged. Running a container as privileged
grants all capabilities to the container, allowing it to interact with the underlying host from within the
container. If your application does require additional capabilities, rather than running the container
as privileged, you can instead select the exact list of capabilities in securityContext of a pod
that is desired. A list of capabilities can be found in the CAPABILITIES(7) page of the Linux manual
pages (http://man7.org/linux/man-pages/man7/capabilities.7.html).

In addition to the container image that has been deployed, chart developers should focus on the
resources that have been granted to an application to ensure the integrity of the Kubernetes cluster.
We will dive into this topic in the next section.

Setting resource requests and limits

Pods consume resources from the host (node) that it is running within. Resources are defined in terms
of requests (the minimum amount of resources to allocate) and limits (the maximum amount of
resources the pod is allowed to use). Pods that do not define requests run the risk of being scheduled
on nodes that cannot support their minimum resource requirements. Pods that do not define limits
run the risk of exhausting a node’s resources, resulting in pod eviction and resource contention with
other workloads. Because of the issues that can occur when resource requests and limits are not set,
chart developers should ensure that their charts define these resource constraints while allowing users
to override them with Helm values as needed.

For example, as a chart developer, you may write your chart so that it includes the following default
values for configuring resources:

resources:

 limits:

 cpu: "1"

 memory: 4Gi

 requests:

 cpu: 500m

 memory: 2Gi

Then, if the chart is installed without explicitly setting the application’s resource requirements, the
defaults would be applied to avoid under- or over-utilizing cluster resources.

http://man7.org/linux/man-pages/man7/capabilities.7.html

Developing secure and stable Helm charts 269

Apart from resource requests and limits, a Kubernetes administrator can also create LimitRange
and ResourceQuota objects to restrict the number of resources requested and consumed by
applications within namespaces. The LimitRange and ResourceQuota objects are applied
separately from Helm, usually as part of a namespace provisioning process.

LimitRanges are used to restrict the number of resources a container or pod is allowed to consume
within a given namespace. They are also used to set the default resources for containers that don’t
already have resource limits defined. The following is an example of a LimitRange definition:

apiVersion: v1

kind: LimitRange

metadata:

 name: limits-per-container

spec:

 limits:

 - max:

 cpu: 4

 memory: 16Gi

 default:

 cpu: 500m

 memory: 2Gi

 defaultRequest:

 cpu: 50m

 memory: 128Mi

 type: Container

In the example, LimitRange sets the maximum amount of allowed container resources to 4 CPU
cores and 16 Gi of memory. For containers whose resource limits are undefined, a limit of 500 millicores
of CPU and 2 Gi of memory will automatically be applied. For containers whose resource requests are
undefined, a request of 50 millicores of CPU and 128 Mi of memory will automatically be applied.
LimitRanges can also be applied at the pod level by setting the type field to Pod. This setting
ensures that the sum of resource utilization of all containers in the pod satisfies the specified limits.

In addition to setting limits against CPU and memory utilization, you can configure LimitRange
to restrict storage consumption by setting the type field to PersistentVolumeClaim. The
following is a LimitRange example used to restrict storage claims to 8 Gi or fewer:

apiVersion: v1

kind: LimitRange

metadata:

Helm Security Considerations270

 name: limits-per-pvc

spec:

 - max:

 storage: 8Gi

 type: PersistentVolumeClaim

While LimitRange objects are used to restrict resources at the Container, Pod, or
PersistentVolumeClaim level, ResourceQuotas are used by cluster administrators to
restrict resource utilization at the namespace level. They are used to define the maximum number of
resources a namespace can utilize in addition to limiting the amount of Kubernetes objects that can be
created, such as Secrets and ConfigMaps. The following is an example ResourceQuota definition:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: pod-and-pvc-quota

spec:

 hard:

 limits.cpu: "32"

 limits.memory: 64Gi

 requests.cpu: "24"

 requests.memory: 48Gi

 requests.storage: 20Gi

This ResourceQuota would ensure that the sum of all CPU and memory requests and limits remain
under the defined amounts. It also sets a limit on the storage for PersistentVolumeClaims
that can be requested within the namespace.

By setting reasonable defaults for resource constraints in your Helm charts, along with the usage
of LimitRange and ResourceQuotas, you can ensure that users of your Helm charts do not
exhaust cluster resources. You can also help ensure that applications request the minimum amount
of resources necessary for a proper operation.

With an understanding of resource requests and limits, let’s move on to the next topic – handling
secrets in Helm charts.

Handling secrets in Helm charts

Handling secrets is a common concern when working with Helm charts. Consider the WordPress
application from Chapter 3, Installing Your First App with Helm, where you were required to provide
a password to configure an admin user. This password was not provided by default in the values.

Developing secure and stable Helm charts 271

yaml file because this would have left the application vulnerable if you forgot to override the
password value. Chart developers should be in the habit of not providing defaults for secret values,
such as passwords, and should instead require users to provide an explicit value. This can easily be
accomplished by leveraging the required function. Helm can also generate random strings using
the randAlphaNum function.

Note
Note that the randAlphaNum function generates a new random string each time the chart
is upgraded. For that reason, developers should design charts with the expectation that users
will provide their own password or another secret key, with the required function serving
as a gate to ensure that a value is provided.

When using native Kubernetes resources to store secret information, chart developers should ensure
that these sensitive assets are saved in a Kubernetes Secret, not a ConfigMap. Secrets and ConfigMaps
are similar, but Secrets are reserved for sensitive data. Because secret and non-secret data is stored in
separate objects, cluster administrators can set RBAC policies accordingly to restrict access to secret
data while allowing permission to data that is non-secret (RBAC will be described further later in the
Configuring RBAC rules section).

Chart users should ensure that secret values such as credentials are provided securely. Values are most
commonly provided using the --values flag, in which properties are configured within values
files. This is an appropriate method when working with non-secret values, but you should use caution
when using this approach with secrets. Users should be sure that values files that contain secrets
are not checked into a Git repository or an otherwise public location where those secrets could be
exposed. One way that users can avoid exposing secrets is by leveraging the --set flag to pass secrets
inline from the command line. This reduces the risk of credentials being exposed, but users should
be aware that this could reveal the credentials in the bash history.

Another way that users can avoid exposing secrets is by leveraging an encryption tool to encrypt
values files that contain secrets. This approach would continue to allow users to apply the --values
flag, along with enabling the values file to be stored in a remote location, such as a Git repository.
Then, the values file can only be decrypted by users that have the appropriate decryption key and
would remain encrypted for all other users, only allowing trusted entities to access the data. Users can
simply leverage GPG to encrypt the values files, or they can leverage a purpose-built tool such as
Secrets OPerationS (SOPS). SOPS (https://github.com/mozilla/sops) is a tool designed
to encrypt the values of YAML or JSON files, but leave the keys unencrypted. The following code
depicts a secret key/value pair from a SOPS-encrypted file:

password: ENC[AES256_
GCM,data:xhdUx7DVUG8bitGnqjGvPMygpw==,iv:3LR9KcttchCvZNpRKqE5L
cXRyWD1I00v2kEAIl1ttco=,tag:9HEwxhT9s1pxo9lg19wyNg==,type:str]

https://github.com/mozilla/sops

Helm Security Considerations272

Notice how the password key is unencrypted but the value is encrypted. This allows you to easily
see the types of values contained within the file without exposing their sensitive values.

There are other tools capable of encrypting values files that contain secrets. Some examples include
git-crypt (https://github.com/AGWA/git-crypt) and blackbox (https://github.
com/StackExchange/blackbox). Additionally, purpose-built secret management utilities,
such as HashiCorp Vault or CyberArk Conjur, can be used to encrypt secrets in the form of key/
value stores. Secrets can then be retrieved by authenticating against the secret management system
and then be utilized within Helm by specifying their values with the --set flag.

Now that you understand how security plays a role in Helm chart development, let’s discuss how Role-
Based Access Control (RBAC) can be applied in Kubernetes to provide greater security to your users.

Configuring RBAC rules
The ability of an authenticated user in Kubernetes to perform actions is governed by a set of RBAC
policies. As introduced in Chapter 2, Preparing a Kubernetes and Helm Environment, policies, known
as roles, can be associated with users or service accounts, and Kubernetes includes several roles with
any installation. RBAC has been enabled by default in Kubernetes since version 1.6. When thinking
about Kubernetes RBAC in the context of Helm usage, you need to consider two factors:

• The user installing the Helm chart

• The service account associated with the pod running the workload

In most cases, the individual responsible for installing a Helm chart is associated with a Kubernetes
user. However, Helm charts can be installed through other means, such as by a Kubernetes operator
with an associated service account.

By default, users and service accounts have minimal permissions in a Kubernetes cluster. Additional
permissions are granted through the use of roles, which have been scoped to an individual namespace,
or cluster roles, which grant access at a cluster level. These roles are then associated with a user or
service account using either a role binding or a cluster role binding, depending on the type of policy
being targeted. While Kubernetes has several included roles, the Principle of Least Privilege should
be used wherever possible. The Principle of Least Privilege is a security concept that emphasizes that
a user or application is granted only the minimum set of permissions that is needed to function. For
example, imagine we wanted to add functionality to our application that allows for pod metadata to be
queried. While Kubernetes contains a built-in role called view that provides the necessary permissions
for reading pod manifests in a given namespace, it also grants access to other resources, such as
ConfigMaps and Deployments. To minimize the level of access that is provided to an application, a
custom policy, in the form of Role or ClusterRole, can be created that provides only the necessary
permissions that the application needs. Since most typical users of a Kubernetes cluster do not have
access to create resources at a cluster level, let’s create a role that is applied to the namespace that the
Helm chart is deployed in.

https://github.com/AGWA/git-crypt
https://github.com/StackExchange/blackbox
https://github.com/StackExchange/blackbox

Configuring RBAC rules 273

The kubectl create role command can be used to create a Kubernetes Role. Alternatively,
the Role and RoleBinding resources could have been created using YAML definitions. A basic
role contains two key elements:

• The type of action (verb) made against the Kubernetes API

• The list of Kubernetes resources to target

As an example, to demonstrate how RBAC can be configured in Kubernetes, let’s configure a set of
RBAC rules to allow an authenticated user to view Pods within a namespace:

1. First, be sure to start your minikube cluster and create a new namespace for this exercise:

$ minikube start

$ kubectl create namespace chapter12

2. Next, use the kubectl CLI to create a new role called pod-viewer:

$ kubectl create role pod-viewer --resource=pods
--verb=get,list –n chapter12

With this new role created, it needs to be associated with a user or service account. Since we
want to associate the role with an application running in Kubernetes, we will apply the role
to a service account. To abide by the Principle of Least Privilege, it is recommended to create
a unique service account for the application (otherwise, the default service account would
be used). This is to ensure that no other workloads are deployed in the same namespace that
would accidentally inherit the same permissions.

3. Create a new service account called example by running the following command:

$ kubectl create sa example –n chapter12

4. Finally, create RoleBinding called pod-viewers and associate it with the example
service account:

$ kubectl create rolebinding pod-viewers --role=pod-
viewer --serviceaccount=chapter12:example –n chapter12

With the role and role binding created, the example service account has the appropriate permissions
to list and get pods. To verify this assumption, we can use the kubectl auth can-i command:

$ kubectl auth can-i list pods
--as=system:serviceaccount:chapter12:example –n chapter12

yes

The --as flag makes use of the user impersonation feature in Kubernetes to allow you to debug
authorization policies.

Helm Security Considerations274

To confirm that the service account cannot access a resource it should not be able to, such as listing
Deployments, you can run the following command:

$ kubectl auth can-i list deployments
--as=system:serviceaccount:chapter12:example –n chapter12

no

As you can see from the output of no for listing Deployments and yes for listing pods, the expected
policies are in place. This service account can now be referenced by a Helm chart. Alternatively, a
Helm chart could be written to create the ServiceAccount, Role, and RoleBinding resources
natively, assuming that a user installing the chart has the appropriate privileges required.

When used effectively, Kubernetes RBAC aids in providing Helm chart developers with the tools
needed to enforce least-privilege access, protecting users and applications from potential errant or
malicious actions.

To clean up from this exercise, you can delete your namespace with kubectl delete ns
chapter12 and stop your minikube cluster with minikube stop.

Next, let’s discuss how to access secure Helm chart repositories.

Accessing secure chart repositories

Chart repositories allow you to discover Helm charts and install them on your Kubernetes cluster.
Repositories were explored in Chapter 8, Publishing to a Helm Chart Repository. There, you learned
how to serve charts using an HTTP server (demonstrated using GitHub Pages) and an OCI registry
(demonstrated using GitHub’s container registry, ghcr.io).

Most chart repositories are readily available and open for those who are interested. However, chart
repositories and hosting services do provide additional security measures for interacting with content
stored within a repository, including the following:

• Authentication

• Transport Layer Security (TLS)

HTTP(S)-based chart repositories support basic and certificate-based authentication. For basic
authentication, a username and password can be provided when adding a repository using the helm
repo add command through the use of the --username and --password flags. For example,
if you wanted to access a repository that is protected via basic authentication, adding the repository
would take the following form:

$ helm repo add <repo_name> <repo_url> --username <username>
--password <password>

Configuring RBAC rules 275

Under certain circumstances, you may also need to use the --pass-credentials flag in addition
to --username and --password. Recall that an index.yaml file contains indexing of all Helm
charts within the chart repository. Within the index.yaml file is a property field named urls
that refers to the location of the associated Helm chart. Typically, the urls field contains relative
paths within the chart repository, but in some cases, a location at an entirely different domain can be
specified. Without the --pass-credentials flag, Helm will not forward your username and
password along to these domains, which is a security feature implemented in Helm 3.6.1 to prevent
your information from being exposed. However, if you do need to pass your credentials to another
domain to authenticate against those endpoints, you can provide the --pass-credentials flag
when using the helm repo add command.

OCI registries also support basic authentication using the helm registry login command. The
username is provided using the --username flag, but there are two ways to specify the password:

• --password: Provides the password as an argument. This could reveal the password in
plaintext in the bash history.

• --password-stdin: Provides the password from stdin. This allows you to keep the
password hidden from the bash history by redirecting it from stdin.

It is recommended to use the --password-stdin flag to keep the password concealed from
the bash history. As such, you can perform basic authentication against an OCI registry using the
following command:

$ cat <password_file> | helm registry login <registry_host>
--username <username> --password-stdin

While basic authentication is most commonly used, certificate-based authentication is another
way of verifying a client’s identity. Helm, at the time of writing, does not provide flags for OCI
certificate-based authentication, but for traditional Helm repositories, the Helm repo add
command provides the --cert-file and --key-file flags, which are used to specify your
client certificate and key, respectively.

Enabling basic authentication and certificate authentication on the chart repository itself depends on
the repository implementation that is used. For example, ChartMuseum, a popular chart repository
solution, provides the --basic-auth-user and --basic-auth-pass flags, which can be
used on startup to configure the basic auth username and password. It also provides the --tls-ca-
cert flag to configure the certificate authority (CA) certificate for certificate authentication. Other
chart repository implementations may provide similar or additional capabilities.

Even with authentication in place, the packets sent between your Helm client and your chart repository
must be transmitted securely using TLS-based encryption. While this is a given for certificate-based
authentication, which leverages TLS natively, repositories that use basic authentication can still benefit
from encrypting network traffic. Configuring TLS on the chart repository depends on the repository
implementation being used, but for ChartMuseum, the --tls-cert and --tls-key flags can

Helm Security Considerations276

be used to provide the certificate chain and key files. More general web servers, such as NGINX,
typically require a configuration file that provides the location of the certificate and key files on the
server. Offerings such as GitHub Pages already have TLS configured.

Each of the Helm repositories that we have used so far has used certificates signed by publicly available
CAs that are stored in your web browser and underlying operating system. As a result, we did not need
to go out of our way to trust their certificates. Many large organizations, however, have their own CAs
that are used to produce the certificate for the chart repository. Since this certificate is likely not from
a publicly available CA, the Helm CLI may not trust the certificate, resulting in the following error:

Error: looks like "<repo_url>" is not a valid chart repository
or cannot be reached: Get <repo_url>/index.yaml: x509:
certificate signed by unknown authority

To allow the Helm CLI to trust the chart repository’s certificate, the CA certificate, or CA bundle
containing the certificate chain, can be added to the operating system’s trust store. Alternatively, for
HTTPS chart repositories, the --ca-file flag can be added to the helm repo add command.

Finally, depending on how the chart repository is configured, additional metrics can be obtained to
perform request-level auditing and logging to determine who has attempted to access the repository.

Through the use of authentication and TLS, additional capabilities can be realized for enhancing the
security footprint of Helm repositories.

Summary
In this chapter, you learned about different topics around security that pertain to Helm usage. First,
you learned how to prove the data provenance and integrity of Helm releases and Helm charts. Next,
you learned about Helm chart security and how a chart developer can leverage security best practices
to write a stable and secure Helm chart. Then, we focused on using RBAC to create an environment
based on the Principle of Least Privilege, and we finished by talking about how chart repositories can
be secured using authentication and TLS. Now, by employing each of these concepts, you are well
equipped to create a secure Helm architecture and working environment.

Thank you for reading Managing Kubernetes Resources Using Helm! We hope that this book helps you
be confident and efficient as you use Helm to work within the Kubernetes ecosystem.

Further reading 277

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

• To learn more about data provenance and integrity in the context of Helm charts, go to
https://helm.sh/docs/topics/provenance/.

• To learn more about Kubernetes RBAC, check out the Using RBAC Authorization section from
the Kubernetes documentation at https://kubernetes.io/docs/reference/
access-authn-authz/rbac/.

• Check out the chart repository guide from the Helm documentation to learn more about chart
repositories: https://helm.sh/docs/topics/chart_repository/.

• Finally, visit the Registries page from the Helm documentation to learn more about OCI support:
https://helm.sh/docs/topics/registries/.

Questions
Answer the following questions to test your knowledge of this chapter:

1. What are data provenance and integrity? How are data provenance and data integrity different?

2. What commands can a user run to verify the data provenance and integrity of a Helm chart?
Which files are required to make this process possible?

3. What considerations need to be taken into account to use and maintain secure container images?

4. Why is it important to leverage resource requests and limits in your Helm chart? What other
Kubernetes resources can be used to configure requests and limits?

5. What is the Principle of Least Privilege? Which Kubernetes resources allow you to configure
authorization and achieve the least privilege?

6. Which flags can you use to authenticate to an HTTP(S) repository?

7. Which flags can you use to authenticate to an OCI registry?

https://helm.sh/docs/topics/provenance/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://helm.sh/docs/topics/chart_repository/
https://helm.sh/docs/topics/registries/

Index

Symbols

--set flag 65
--values flag 65

A
Amazon S3 184
Apache httpd 184
application

deploying, from remote Helm chart
repository with Agro CD 229, 230

ApplicationSet Controller, generators
reference link 231

Argo CD
about 221
installing 222-225
used, for deploying application from remote

Helm chart repository 229, 230
Argo CD Application Controller 223
Argo CD, Git Webhook Configuration

reference link 229
Argo CD Repo Server 223
Argo CD Server 223
Argo Helm Charts

reference link 222

Artifact Hub
about 47
URL 184

automated life cycle hooks
providing 20

B
backup/persistentvolumeclaim.

yaml template 172, 173
bare pod 164
Bitnami repository

adding 51, 52
Bitnami repository chart retention policy 50
blackbox

reference link 272
boilerplate 15
browser

WordPress charts, viewing in 49, 50
built-in objects

about 125, 126
.Capabilities object 130
.Chart object 128, 129
.Files object 131-133
.Release object 127, 128
.Template object 130

Index280

C
cache path 37
capabilities, Linux manual page

reference link 268
certificate authority (CA) certificate 275
chart definition 53, 94
chart dependencies

declaring 102, 103
downloading 104-108

chart development
features 197

ChartMuseum 275
about 184
reference link 184

chart rendering
server-side validation, adding 198

chart repository 47
charts 17
chart test

improving, with Chart Testing tool 205, 206
running 203, 204

Chart Testing project
about 206, 207
reference link 206

Chart Testing tool
installing 208-210

Chart.yaml file
about 94, 95
Bitnami/WordPress Chart.yaml file 98
dependencies map 103, 104
fields 95, 96
metadata, on Artifact Hub 97

child charts 116
chroots 5
Cloud Native Computing

Foundation (CNCF) 5
cluster-admin role 41

code reuse
enabling, with library charts 154, 155
enabling, with named templates 153, 154

command line
WordPress charts, searching from 48, 49

Command-Line Interface (CLI) 206
conditional dependencies

creating 108-112
configuration path 38
container orchestration 6, 7
containers 5
Content Management System (CMS) 46
continuous integration/continuous

delivery (CI/CD) 220
control loop 238
CRDs

creating 155, 156
managing 252, 253

CRs
managing 252, 253

CyberArk Conjur 272

D
data integrity 256
data path 38
data provenance 256
declarative resources

configuring, dynamically 19
dependencies map

in Chart.yaml 103, 104
dependency names

altering 112-116
dependency values

altering 112-116
development-operations (DevOps) 4

Index 281

digital signatures
about 256
verifying 257

dump.rdb file 171

E
edit role 41
Electronic Numerical Integrator and

Computer (ENIAC) 4
environment variables

about 37
HELM_CONFIG_HOME or

XDG_CONFIG_HOME 37
HELM_DATA_HOME or

XDG_DATA_HOME 37
HELM_DRIVER 38
HELM_NAMESPACE 38
KUBECONFIG 38

F
finalizers 226
Flux 221

G
git-crypt

reference link 272
GitHub Pages 184
GitHub Pages repository

cloning 186, 187
creating 185, 186

GitOps
about 220
using 221

Git repository
Helm chart, deploying from 225-228

glob pattern 132
Go 123
Go templates 123
GPG key pair

creating 257-259
Guestbook 238
Guestbook application

about 84
deploying 250-252

Guestbook chart
deploying 160, 161
deployment template, updating 158, 159
Redis values, updating 158
values.yaml file, updating 158, 159

Guestbook Chart.yaml file
updating 99

Guestbook Helm chart
hook, writing 170, 171
publishing, to HTTP repository 184-189
publishing, to OCI registry 190-193
scaffolding 88, 89
updating 117, 118

Guestbook operator
deploying 246-249

Guestbook operator control loop
about 239, 240
local development environment,

preparing 240-242
operator file structure, scaffolding 242, 243
operator image, building 243-245

H
HashiCorp Vault 272
Helm

about 15, 23
benefits 18-20
configuring 34

Index282

downloads, verifying 259-263
installing 33, 34
reference link 33
security considerations 255
setting up 33

Helm chart
about 45
chart repositories, accessing 274- 276
deploying, from Git repository 225-228
deploying, to multiple

environments 230-234
linting 199, 200
security 266
signing 263-265
verifying 264-266

Helm chart repository 183, 184
Helm configuration

authentication 39-41
authorization 41, 42
environment variables 37, 38
plugins, adding 36
tab completion 38
upstream repositories, adding 34-36

helm create command
about 88
files 89, 90
Guestbook Helm chart, scaffolding 88, 89

Helm Diff 36
helm get all command 64
helm get notes command 63
helm get values command 63
Helm hook

about 164, 165
cleanup 169, 170
Helm chart, installation 165, 166
life cycle 167, 168
life cycle, executing 178, 179
reference link 167

helm install command 58
Helm Monitor 37
Helm plugins

examples, upstream plugins 36
reference link 36

helm rollback command 76
helm search hub command 48, 49
Helm Secrets 36
helm show readme command 54
helmsman 6
Helm template

basics 122, 123
control structures 140-145
functions 133-139
linting 201
server-side validation, adding

to chart rendering 198
validating, with helm template

command 196, 197
values 124, 125
variables 146-148
verifying 196

Helm template validation
about 148
fail function 148-150
required function 150, 151
values.schema.json file 151, 152

Helm Unittest 37
high availability (HA) 6, 7
hook

about 164
pre-rollback life cycle phase 171
pre-upgrade life cycle phase 171
writing, in Guestbook Helm chart 171

hook deletion policies
reference link 169

horizontal scaling 7

Index 283

HTTP repository
Guestbook Helm chart,

publishing to 184-189
HTTP server

using 184

J
jails 5
JavaScript Object Notation (JSON) 87, 88, 122
job 164

K
key-value pairs

defining 85
kubebuilder 239
kubeconfig file

clusters 39
contexts 39
users 39

kubectl
about 9
declarative configuration 11-13
downloading, from link 32
download link, for Linux 32
download link, for macOS 32
download link, for Windows 32
imperative configuration 10, 11
installing 30
installing, via minikube 30
installing, without minikube 31
package manager, using 31, 32
setting up 29

kubectl config view command 40

Kubernetes
about 5, 221
community 7
container orchestration 6, 7
high availability (HA) 7
resources 8, 9
scalability 7

Kubernetes application
deploying 8

Kubernetes environment
creating 54, 55

Kubernetes operators 238, 239
Kubernetes package manager 16-18
Kubernetes resources

complexity, abstracting 18, 19
Kustomize 157, 246

L
library charts

code reuse, enabling 154, 155
lint-and-install command

executing 207, 211-214
live Kubernetes cluster

tests, performing in 202, 203
live state synchronization

simplifying 20
local Kubernetes environment

minibuke usage, exploring 28, 29
minikube, installing 24, 25
preparing, with minibuke 24
VirtualBox, configuring as

default driver 27, 28
VirtualBox, installing 26, 27

local state synchronization
simplifying 20

Index284

M
maps 86
message digest 256
microservices 4, 5
minikube

about 24
installing 24, 25
reference link, of releases page 25
resource allocation, configuring 28
usage, exploring 28, 29

minikube environment
setting up 196, 222

monolithic 4
monorepo 205

N
named templates

code reuse, enabling 153, 154
NGINX 92, 184
NodePort services 207

O
OCI Guestbook chart

pulling 193
ongoing history of revisions

maintaining 19
Open Container Initiative (OCI) registry

about 184
Guestbook Helm chart,

publishing to 190-193
OpenSCAP 267
Operator Framework 239
Operator pattern 239
operators

managing 252, 253

P
package managers 16, 17, 45
parent chart 102
persistentvolumeclaim.yaml template 174
Personal Access Token (PAT) 243
Personal Account Token (PAT)

creating 191
PHP: Hypertext Preprocessor (PHP) 84
pipelines 136
plugins

about 36
adding, to Helm 36

post rendering 156, 157
pre-rollback hook

creating, to restore database 174-177
Pretty Good Privacy (PGP) 256
pre-upgrade hook

creating, to store data snapshot 171-174
Principle of Least Privilege 272
private keys 256
provenance file 265

R
RBAC rules

configuring 272, 273
Redis 84, 223
release history 19
release notes

generating 145, 146
remote Helm chart repository

Agro CD, used for deploying
application from 229, 230

repository 47
resource configuration

challenges 13-15

Index 285

resource management
approaches 9

resources
deploying, in intelligent order 20

restore/job.yaml template 177
restore/rolebinding.yaml template 176
restore/serviceaccount.yaml template 175
revision 74
revision history

example 19
role-based access control (RBAC) 41
RPM Package Manager (RPM) 17

S
scaffolded Guestbook chart

deploying 91-93
Secrets OPerationS (SOPS)

about 271
reference link 271

security, Helm charts
developing 266
resource limits, setting 268-270
resource requests, setting 268-270
secrets, handling 270, 271
secure images, using 266-268

self-hosted WordPress instance 46
self-hosted WordPress.org 46
SemVer versioning 206
server-side validation

adding, to chart rendering 198
service 7
set-cluster command 39
set-context command 40
set-credentials command 39
software applications 4
Source Code Management (SCM) 65
source of truth (SOT) 14

T
templates 19, 121
time to live (TTL) 169

V
values 19
vertical scaling 7
view role 41, 272
VirtualBox

configuring, as default driver 27
download link 27
installing 26
URL 26

virtual machine (VM) 5
Vuls 267

W
WordPress

about 46
accessing 66-70

WordPress chart
finding 47
information, displaying from

command line 52-54
installation, running 58, 59
installing 55
release, inspecting 60-65
searching, from command line 48, 49
values file, creating for configuration 55-58
viewing, in browser 49, 50

WordPress.com
about 46
disadvantages, over self-hosted

WordPress.org 46

Index286

WordPress history
inspecting 74-76

WordPress.org 46
WordPress release

Helm values, modifying 70, 71
rollback, running 76, 77
rolling back 74
uninstalling 78
upgrade, running 71, 72
upgrading 70
values, resetting during upgrade 73, 74
values, reusing during upgrade 73, 74

World Wide Web (WWW) 4

X
XDG Base Directory Specification 37

Y
YAML Ain’t Markup Language (YAML)

about 85, 122
JSON format 87, 88
key-value pairs, defining 85, 86
value types 86, 87

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

https://Packt.com
https://packt.com
https://customercare@packtpub.com
https://customercare@packtpub.com
https://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

End-to-End Automation with Kubernetes and Crossplane

Arun Ramakani

ISBN: 9781801811545

• Understand the context of Kubernetes-based infrastructure automation

• Get to grips with Crossplane concepts with the help of practical examples

• Extend Crossplane to build a modern infrastructure automation platform

• Use the right configuration management tools in the Kubernetes environment

• Explore patterns to unify application and infrastructure automation

• Discover top engineering practices for infrastructure platform as a product

https://packt.link/9781801811545

289Other Books You May Enjoy

The Kubernetes Bible

Nassim Kebbani, Piotr Tylenda, Russ McKendrick

ISBN: 9781838827694

• Manage containerized applications with Kubernetes

• Understand Kubernetes architecture and the responsibilities of each component

• Set up Kubernetes on Amazon Elastic Kubernetes Service, Google Kubernetes Engine, and
Microsoft Azure Kubernetes Service

• Deploy cloud applications such as Prometheus and Elasticsearch using Helm charts

• Discover advanced techniques for Pod scheduling and auto-scaling the cluster

• Understand possible approaches to traffic routing in Kubernetes

https://packt.link/9781838827694

290

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

https://authors.packtpub.com

291

Hi!

We’re Austin and Andrew, the authors of Managing Kubernetes Resources using Helm, Second Edition.
We really hope you enjoyed reading this book and found it useful for increasing your productivity
and efficiency in Helm and Kubernetes delivery.

It would really help us (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on Managing Kubernetes Resources using Helm, Second Edition.

Go to the link below to leave your review:

https://packt.link/r/1803242892

Your review will help us to understand what’s worked well in this book, and what could be improved
upon for future editions, so it really is appreciated.

Best Wishes,

https://packt.link/r/1803242892

	Cover
	Title Page
	Copyright and Credits
	Dedicated
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Introduction
and Setup
	Chapter 1: Understanding
Kubernetes and Helm
	From monoliths to modern microservices
	What is Kubernetes?
	Container orchestration
	HA
	Scalability
	Active community

	Deploying a Kubernetes application
	Approaches to resource management
	Imperative and declarative configurations

	Resource configuration challenges
	The many types of Kubernetes resources
	Keeping live and local states in sync
	Application life cycles are hard to manage
	Resource files are static

	Helm to the rescue!
	Understanding package managers
	The Kubernetes package manager
	The benefits of Helm

	Summary
	Further reading
	Questions

	Chapter 2: Preparing a Kubernetes and Helm Environment
	Technical requirements
	Preparing a local Kubernetes environment with minikube
	Installing minikube
	Installing VirtualBox
	Configuring VirtualBox as the default driver
	Configuring minikube resource allocation
	Exploring the basic usage of minikube

	Setting up kubectl
	Installing kubectl

	Setting up Helm
	Installing Helm

	Configuring Helm
	Adding upstream repositories
	Adding plugins
	Environment variables
	Tab completion
	Authentication
	Authorization/RBAC

	Summary
	Further reading
	Questions

	Chapter 3: Installing Your First
App with Helm
	Technical requirements
	Understanding the WordPress application
	Finding a WordPress chart
	Searching for WordPress charts from the command line
	Viewing the WordPress chart in a browser
	Bitnami repository chart retention policy
	 Adding the full Bitnami repository
	Showing the WordPress chart information from the command line

	Creating a Kubernetes environment
	Installing a WordPress chart
	Creating a values file for configuration
	Running the installation
	Inspecting your release

	Choosing between --set and --values
	Accessing the WordPress application
	Upgrading the WordPress release
	Modifying the Helm values
	Running the upgrade
	Reusing and resetting values during an upgrade

	Rolling back the WordPress release
	Inspecting the WordPress history
	Running the rollback

	Uninstalling the WordPress release
	Shutting down your environment
	Summary
	Further reading
	Questions

	Part 2:
Helm Chart Development
	Chapter 4: Scaffolding a New Helm Chart
	Technical requirements
	Understanding the Guestbook application
	Understanding the YAML format
	Defining key-value pairs
	Value types
	The JSON format

	Scaffolding the Guestbook Helm chart
	Deploying the scaffolded Guestbook chart
	Understanding the Chart.yaml file
	Updating the Guestbook Chart.yaml file
	Summary
	Further reading
	Questions

	Chapter 5: Helm Dependency Management
	Technical requirements
	Declaring chart dependencies
	The dependencies map
	Downloading chart dependencies
	Creating conditionals
	Altering dependency names and values
	Updating the guestbook Helm chart
	Cleaning up
	Summary
	Further reading
	Questions

	Chapter 6: Understanding Helm Templates
	Technical requirements
	Helm template basics
	Template values
	Built-in objects
	The .Release object
	The .Chart object
	The .Template object
	The .Capabilities object
	The .Files object

	Helm template functions
	Helm template control structures
	Generating release notes
	Helm template variables
	Helm template validation
	The fail function
	The required function
	The values.schema.json file

	Enabling code reuse with named templates and library charts
	Creating CRDs
	Post rendering
	Updating and deploying the Guestbook chart
	Updating Redis values
	Updating Guestbook’s deployment template and values.yaml file
	Deploying the Guestbook chart

	Summary
	Further reading
	Questions

	Chapter 7: Helm Lifecycle Hooks
	Technical requirements
	The basics of a Helm hook
	Helm hook life cycle
	Helm hook cleanup
	Writing hooks in the Guestbook Helm chart
	Creating the pre-upgrade hook to take a data snapshot
	Creating the pre-rollback hook to restore the database
	Executing the life cycle hooks

	Cleaning up
	Summary
	Further reading
	Questions

	Chapter 8: Publishing to a
Helm Chart Repository
	Technical requirements
	Understanding Helm chart repositories
	Publishing to an HTTP repository
	Creating a GitHub Pages repository
	Publishing the Guestbook chart

	Publishing to an OCI registry
	Pulling the OCI Guestbook chart

	Summary
	Further reading
	Questions

	Chapter 9: Testing Helm Charts
	Technical requirements
	Setting up your environment
	Verifying Helm templating
	Validating template generation locally with helm template
	Adding server-side validation to chart rendering
	Linting Helm charts and templates

	Testing in a live cluster
	Running the chart test

	Improving chart tests with the Chart Testing tool
	Introducing the Chart Testing project
	Installing the Chart Testing tools
	Running the lint-and-install command

	Cleaning up
	Summary
	Further reading
	Questions

	Part 3:
Advanced Deployment Patterns
	Chapter 10: Automating Helm
with CD and GitOps
	Technical requirements
	Understanding CI/CD and GitOps
	CI/CD
	Taking CI/CD to the next level using GitOps

	Setting up your environment
	Installing Argo CD
	Deploying a Helm chart from a Git repository
	Deploying an application from a remote Helm chart repository
	Deploying a Helm chart to multiple environments
	Cleaning up
	Summary
	Questions

	Chapter 11: Using Helm with the
Operator Framework
	Technical requirements
	Understanding Kubernetes operators
	Understanding the Guestbook operator control loop
	Preparing a local development environment
	Scaffolding the operator file structure
	Building the operator image
	Deploying the Guestbook operator
	Deploying the Guestbook application

	Using Helm to manage operators, CRDs, and CRs
	Cleaning up
	Summary
	Further reading
	Questions

	Chapter 12: Helm Security Considerations
	Technical requirements
	Data provenance and integrity
	Creating a GPG key pair
	Verifying Helm downloads
	Signing and verifying Helm charts

	Developing secure and stable Helm charts
	Using secure images
	Setting resource requests and limits
	Handling secrets in Helm charts

	Configuring RBAC rules
	Accessing secure chart repositories

	Summary
	Further reading
	Questions

	Index
	Other Books You May Enjoy

