

Generative AI with

LangChain

Build large language model (LLM)

apps with Python, ChatGPT, and other

LLMs

Ben Auffarth

BIRMINGHAM—MUMBAI

Generative AI with LangChain

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate
use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

Senior Publishing Product Manager: Tushar Gupta

Acquisition Editor – Peer Reviews: Tejas Mhasvekar

Project Editor: Namrata Katare

Content Development Editors: Tanya D’cruz and Elliot Dallow

Copy Editor: Safis Editing

Technical Editor: Kushal Sharma

Proofreader: Safis Editing

Indexer: Manju Arasan

Presentation Designer: Ajay Patule

Developer Relations Marketing Executive: Monika Sangwan

First published: December 2023

Production reference: 1141223

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83508-346-8

www.packt.com

https://www.packt.com/

To Diane and Nico

– Ben Auffarth

Contributors

About the author

Ben Auffarth is a seasoned data science leader with a background and
Ph.D. in computational neuroscience. Ben has analyzed terabytes of data,
simulated brain activity on supercomputers with up to 64k cores, designed
and conducted wet lab experiments, built production systems processing
underwriting applications, and trained neural networks on millions of
documents. He’s the author of the books Machine Learning for Time Series
and Artificial Intelligence with Python Cookbook. He now works in
insurance at Hastings Direct.

Creating this book has been a long and sometimes arduous journey,
but also an exciting one. It has been enriched immeasurably by the
contributions of several key individuals to whom I owe great thanks.
Foremost, I extend my heartfelt gratitude to Leo, whose insightful
feedback significantly refined this book. I am equally delighted with
my astute editors — Tanya, Elliot, and Kushal. Their efforts went
above and beyond expectations. Tanya, in particular, was
instrumental in guiding me through the writing process, continually
challenging me to clarify my thoughts and significantly shaping the
final product.

About the reviewers

Leonid Ganeline is a machine learning engineer with extensive experience
in natural language processing. He has worked in several start-ups, creating
models and production systems. He is an active contributor to LangChain
and several other open-source projects. His interest lies in model
evaluation, especially in LLM evaluation

I would like to express my gratitude to my parents, for teaching me
how to think rationally, and to my wife, for supporting me in this
endeavor.

Ruchi Bhatia is a computer engineer with a Master’s degree in information
systems management from Carnegie Mellon University. Currently, she is
leveraging her skills as a product marketing manager in the rapidly evolving
field of data science and AI at HP. She takes pride in being the youngest
triple Kaggle Grandmaster across the Notebooks, Datasets, and Discussion
categories. Her previous role as the Leader of Data Science at OpenMined
allowed her to steer a team of data scientists to create innovative and
impactful solutions.

I want to take a moment to express my heartfelt thanks to my parents.
Their unwavering support and encouragement throughout my
journey have been invaluable. Without their belief in my abilities and
their constant guidance, I wouldn’t have achieved the milestones I
have today. Thank you, Mom and Dad, for always being there for me.

Join our community on

Discord

Join our community's Discord space for discussions with the authors and
other readers:

https://packt.link/lang

OceanofPDF.com

https://packt.link/lang
https://oceanofpdf.com/

Contents

Preface
Who this book is for
What this book covers
To get the most out of this book
Get in touch

1. What Is Generative AI?
Introducing generative AI

What are generative models?
Why now?

Understanding LLMs
What is a GPT?
Other LLMs
Major players
How do GPT models work?

Pre-training
Tokenization
Scaling
Conditioning

How to try out these models
What are text-to-image models?
What can AI do in other domains?
Summary
Questions
Join our community on Discord

2. LangChain for LLM Apps
Going beyond stochastic parrots

What are the limitations of LLMs?
How can we mitigate LLM limitations?
What is an LLM app?

What is LangChain?
Exploring key components of LangChain

What are chains?
What are agents?
What is memory?

What are tools?
How does LangChain work?
Comparing LangChain with other frameworks
Summary
Questions
Join our community on Discord

3. Getting Started with LangChain
How to set up the dependencies for this book

pip
Poetry
Conda
Docker

Exploring API model integrations
Fake LLM
OpenAI
Hugging Face
Google Cloud Platform
Jina AI
Replicate
Others

Azure
Anthropic

Exploring local models
Hugging Face Transformers
llama.cpp
GPT4All

Building an application for customer service
Summary
Questions
Join our community on Discord

4. Building Capable Assistants
Mitigating hallucinations through fact-checking
Summarizing information

Basic prompting
Prompt templates
Chain of density
Map-Reduce pipelines

Monitoring token usage
Extracting information from documents
Answering questions with tools

Information retrieval with tools
Building a visual interface

Exploring reasoning strategies
Summary
Questions
Join our community on Discord

5. Building a Chatbot like ChatGPT
What is a chatbot?
Understanding retrieval and vectors

Embeddings
Vector storage

Vector indexing
Vector libraries
Vector databases

Loading and retrieving in LangChain
Document loaders
Retrievers in LangChain

kNN retriever
PubMed retriever
Custom retrievers

Implementing a chatbot
Document loader
Vector storage
Memory

Conversation buffers
Remembering conversation summaries
Storing knowledge graphs
Combining several memory mechanisms
Long-term persistence

Moderating responses
Summary
Questions
Join our community on Discord

6. Developing Software with Generative AI

Software development and AI
Code LLMs

Writing code with LLMs
StarCoder
StarChat
Llama 2
Small local model

Automating software development
Summary
Questions
Join our community on Discord

7. LLMs for Data Science
The impact of generative models on data science
Automated data science

Data collection
Visualization and EDA
Preprocessing and feature extraction
AutoML

Using agents to answer data science questions
Data exploration with LLMs
Summary
Questions
Join our community on Discord

8. Customizing LLMs and Their Output
Conditioning LLMs

Methods for conditioning
Reinforcement learning with human feedback
Low-rank adaptation
Inference-time conditioning

Fine-tuning
Setup for fine-tuning
Open-source models
Commercial models

Prompt engineering
Prompt techniques

Zero-shot prompting
Few-shot learning

Chain-of-thought prompting
Self-consistency
Tree-of-thought

Summary
Questions
Join our community on Discord

9. Generative AI in Production
How to get LLM apps ready for production

Terminology
How to evaluate LLM apps

Comparing two outputs
Comparing against criteria
String and semantic comparisons
Running evaluations against datasets

How to deploy LLM apps
FastAPI web server
Ray

How to observe LLM apps
Tracking responses
Observability tools
LangSmith
PromptWatch

Summary
Questions
Join our community on Discord

10. The Future of Generative Models
The current state of generative AI

Challenges
Trends in model development
Big Tech vs. small enterprises
Artificial General Intelligence

Economic consequences
Creative industries and advertising
Education
Law
Manufacturing
Medicine

Military
Societal implications

Misinformation and cybersecurity
Regulations and implementation challenges

The road ahead
Join our community on Discord
Why subscribe?

Other Books You May Enjoy
Index

OceanofPDF.com

https://oceanofpdf.com/

Preface

In the dynamic and rapidly advancing field of AI, generative AI stands out
as a disruptive force poised to transform how we interact with technology.
This book is an expedition into the intricate world of large language
models (LLMs) – the powerful engines driving this transformation –
designed to equip developers, researchers, and AI aficionados with the
knowledge needed to harness these tools.

Venture into the depths of deep learning, where unstructured data comes
alive, and discover how LLMs like GPT-4 and others are carving a path for
AI’s impact on businesses, societies, and individuals. With the tech industry
and media abuzz with the capabilities and potential of these models, it’s an
opportune moment to explore how they function, thrive, and propel us
toward future horizons.

This book serves as your compass, pointing you toward understanding the
technical scaffolds that uphold LLMs. We provide a prelude to their vast
applications, the elegance of their underlying architecture, and the powerful
implications of their existence. Written for a diverse audience, from those
taking their first steps in AI to seasoned developers, the text melds
theoretical concepts with practical, code-rich examples, preparing you to
not only grasp LLMs intellectually but to also apply them inventively and
responsibly.

As we embark on this journey together, let us prime ourselves to shape and
be shaped by the generative AI narrative that’s unfolding at this very

moment–a narrative where you, armed with knowledge and foresight, stand
at the forefront of this exhilarating technological evolution.

Who this book is for

The book is intended for developers, researchers, and anyone else who is
interested in learning more about LLMs. It is written in a clear and concise
style, and it includes plenty of code examples to help you learn by doing.

Whether you are a beginner or an experienced developer, this book will be a
valuable resource for anyone who wants to get the most out of LLMs and to
stay ahead of the curve about LLMs and LangChain.

What this book covers

Chapter 1, What Is Generative AI?, explains how generative AI has
revolutionized the processing of text, images, and video, with deep learning
at its core. This chapter introduces generative models such as LLMs,
detailing their technical underpinnings and transformative potential across
various sectors. This chapter covers the theory behind these models,
highlighting neural networks and training approaches, and the creation of
human-like content. The chapter outlines the evolution of AI, Transformer
architecture, text-to-image models like Stable Diffusion, and touches on
sound and video applications.

Chapter 2, LangChain for LLM Apps, uncovers the need to expand beyond
the stochastic parrots of LLMs–models that mimic language without true
understanding–by harnessing LangChain’s framework. Addressing
limitations like outdated knowledge, action limitations, and hallucination
risks, the chapter highlights how LangChain integrates external data and
interventions for more coherent AI applications. The chapter critically
engages with the concept of stochastic parrots, revealing the deficiencies in
models that produce fluent but meaningless language, and explicates how
prompting, chain-of-thought reasoning, and retrieval grounding augment
LLMs to address issues of contextuality, bias, and intransparency.

Chapter 3, Getting Started with LangChain, provides foundational
knowledge for you to set up your environment to run all examples in the
book. It begins with installation guidance for Docker, Conda, Pip, and
Poetry. The chapter then details integrating models from various providers
like OpenAI’s ChatGPT and Hugging Face, including obtaining necessary
API keys. It also deals with running open-source models locally. The

chapter culminates in constructing an LLM app to assist customer service
agents, exemplifying how LangChain can streamline operations and
enhance the accuracy of responses.

Chapter 4, Building Capable Assistants, tackles turning LLMs into reliable
assistants by weaving in fact-checking to reduce misinformation, employing
sophisticated prompting strategies for summarization, and integrating
external tools for enhanced knowledge. It explores the Chain of Density for
information extraction and discusses LangChain decorators and expression
language for customizing behavior. The chapter introduces map-reduce in
LangChain for handling long documents and discusses token monitoring to
manage API usage costs.

It looks at implementing a Streamlit application to create interactive LLM
applications and using function calling and tool usage to transcend basic
text generation. Two distinct agent paradigms, plan-and-solve and zero-
shot, are implemented to demonstrate decision-making strategies.

Chapter 5, Building a Chatbot like ChatGPT, delves into enhancing chatbot
capabilities with retrieval-augmented generation (RAG), a method that
provides LLMs with access to external knowledge, improving their
accuracy and domain-specific proficiency. This chapter discusses document
vectorization, efficient indexing, and the use of vector databases like Milvus
and Pinecone for semantic search. We implement a chatbot, incorporating
moderation chains to ensure responsible communication. The chatbot,
available on GitHub, serves as a basis for exploring advanced topics like
dialogue memory and context management.

Chapter 6, Developing Software with Generative AI, examines the
burgeoning role of LLMs in software development, highlighting the
potential for AI to automate coding tasks and serve as dynamic coding

assistants. It explores the current state of AI-driven software development,
experiments with models to generate code snippets, and introduces a design
for an automated software development agent using LangChain. Critical
reflections on the agent’s performance emphasize the importance of human
oversight for error mitigation and high-level design, setting the stage for a
future where AI and human developers work symbiotically.

Chapter 7, LLMs for Data Science, explores the intersection of generative
AI and data science, spotlighting LLMs’ potential to amplify productivity
and drive scientific discovery. The chapter outlines the current scope of
automation in data science through AutoML and extends this notion with
the integration of LLMs for advanced tasks like augmenting datasets and
generating executable code. It covers practical methods for LLMs to
conduct exploratory data analysis, run SQL queries, and visualize statistical
data. Finally, the use of agents and tools demonstrates how LLMs can
address complex data-centric questions.

Chapter 8, Customizing LLMs and Their Output, delves into conditioning
techniques like fine-tuning and prompting, essential for tailoring LLM
performance to complex reasoning and specialized tasks. We unpack fine-
tuning, where an LLM is further trained on task-specific data, and prompt
engineering, which strategically guides the LLM to generate desired
outputs. Advanced prompting strategies such as few-shot learning and
chain-of-thought are implemented, enhancing the reasoning capabilities of
LLMs. The chapter not only provides concrete examples of fine-tuning and
prompting but also discusses the future of LLM advancements and their
applications in the field.

Chapter 9, Generative AI in Production, addresses the complexities of
deploying LLMs within real-world applications, covering best practices for

ensuring performance, meeting regulatory requirements, robustness at scale,
and effective monitoring. It underscores the importance of evaluation,
observability, and systematic operation to make generative AI beneficial in
customer engagement and decision-making with financial consequences. It
also outlines practical strategies for deployment and ongoing monitoring of
LLM apps using tools like Fast API, Ray, and newcomers such as
LangServe and LangSmith. These tools can provide automated evaluation
and metrics that support the responsible adoption of generative AI across
sectors.

Chapter 10, The Future of Generative Models, ventures into the potential
advancements and socio-technical challenges of generative AI. It examines
the economic and societal impacts of these technologies, debating job
displacement, misinformation, and ethical concerns like human value
alignment. As various sectors brace for disruptive AI-induced changes, it
reflects on the responsibility of corporations, lawmakers, and technologists
to forge effective governance frameworks. This final chapter emphasizes
the importance of steering AI development toward augmenting human
potential while addressing risks such as deepfakes, bias, and the
weaponization of AI. It highlights the urgency for transparency, ethical
deployment, and equitable access to guide the generative AI revolution
positively.

To get the most out of this

book

To benefit from the value this book offers, it is essential to have a
foundational understanding of Python. Additionally, possessing some basic
knowledge of machine learning is recommended.

Download the example code

files

The code bundle for the book is hosted on GitHub at
https://github.com/benman1/generative_ai_with_lang

chain. We also have other code bundles from our rich catalog of books
and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
https://packt.link/gbp/9781835083468.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText : Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,
and Twitter handles. For example: “Mount the downloaded WebStorm-
10*.dmg disk image file as another disk in your system.”

A block of code is set as follows:

from langchain.chains import LLMCheckerChain
from langchain.llms import OpenAI
llm = OpenAI(temperature=0.7)
text = "What type of mammal lays the biggest eggs?"

https://github.com/benman1/generative_ai_with_langchain
https://github.com/PacktPublishing/
https://packt.link/gbp/9781835083468

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

from pandasai.llm.openai import OpenAI
llm = OpenAI(api_token="YOUR_API_TOKEN")
pandas_ai = PandasAI(llm)

Any command-line input or output is written as follows:

pip install -r requirements.txt

Bold: Indicates a new term, an important word, or words that you see on the
screen. For instance, words in menus or dialog boxes appear in the text like
this. For example: “Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s
title in the subject of your message. If you have questions about any aspect
of this book, please email us at questions@packtpub.com .

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you reported this to us. Please visit

http://www.packtpub.com/submit-errata, click Submit
Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packtpub.com with
a link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit http://authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Share your thoughts

Once you’ve read Generative AI with LangChain, we’d love to hear your
thoughts! Please click here to go straight to the Amazon
review page for this book and share your feedback.

Your review is important to us and the tech community and will help us
make sure we’re delivering excellent quality content.

https://packt.link/r/1835083463

Download a free PDF copy of

this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere? Is your eBook purchase not compatible with the device of
your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version
of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code
from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835083468

2. Submit your proof of purchase

https://packt.link/free-ebook/9781835083468

3. That’s it! We’ll send your free PDF and other benefits to your email
directly

OceanofPDF.com

https://oceanofpdf.com/

1

What Is Generative AI?

Over the last decade, deep learning has evolved massively to process and generate
unstructured data like text, images, and video. These advanced AI models have gained
popularity in various industries, and include large language models (LLMs). There is
currently a significant level of fanfare in both the media and the industry surrounding AI,
and there’s a fair case to be made that Artificial Intelligence (AI), with these
advancements, is about to have a wide-ranging and major impact on businesses,
societies, and individuals alike. This is driven by numerous factors, including
advancements in technology, high-profile applications, and the potential for
transformative impacts across multiple sectors.

In this chapter, we’ll explore generative models and their application. We’ll provide an
overview of the technical concepts and training approaches that power these models’
ability to produce novel content. While we won’t be diving deep into generative models
for sound or video, we aim to convey a high-level understanding of how techniques like
neural networks, large datasets, and computational scale enable generative models to
reach new capabilities in text and image generation. The goal is to demystify the
underlying magic that allows these models to generate remarkably human-like content
across various domains. With this foundation, readers will be better prepared to consider
both the opportunities and challenges posed by this rapidly advancing technology.

We’ll follow this structure:

Introducing generative AI
Understanding LLMs
What are text-to-image models?
What can AI do in other domains?

Let’s start from the beginning – by introducing the terminology!

Introducing generative AI

In the media, there is substantial coverage of AI-related breakthroughs and their
potential implications. These range from advancements in Natural Language
Processing (NLP) and computer vision to the development of sophisticated language
models like GPT-4. Particularly, generative models have received a lot of attention due
to their ability to generate text, images, and other creative content that is often
indistinguishable from human-generated content. These same models also provide wide
functionality including semantic search, content manipulation, and classification. This
allows cost savings with automation and allows humans to leverage their creativity to an
unprecedented level.

Generative AI refers to algorithms that can generate novel content, as
opposed to analyzing or acting on existing data like more traditional,
predictive machine learning or AI systems.

Benchmarks capturing task performance in different domains have been major drivers of
the development of these models. The following graph, inspired by a blog post titled
GPT-4 Predictions by Stephen McAleese on LessWrong, shows the improvements of
LLMs in the Massive Multitask Language Understanding (MMLU) benchmark,
which was designed to quantify knowledge and problem-solving ability in elementary
mathematics, US history, computer science, law, and more:

Figure 1.1: Average performance on the MMLU benchmark of LLMs

Please note that while most benchmark results come from 5-shot, a few,
like the GPT-2, PaLM, and PaLM-2 results, refer to zero-shot
conditioning.

You can see significant improvements in recent years in this benchmark. Particularly, it
highlights the progress of the models provided through a public user interface by
OpenAI, especially the improvements between releases, from GTP-2 to GPT-3 and GPT-
3.5 to GPT-4, although the results should be taken with a grain of salt, since they are
self-reported and are obtained either by 5-shot or zero-shot conditioning. Zero-shot
means the models were prompted with the question, while in 5-shot settings, models
were additionally given 5 question-answer examples. These added examples could
naively account for about 20% of performance according to Measuring Massive
Multitask Language Understanding (Hendrycks and colleagues, revised 2023).

There are a few differences between these models and their training that can account for
these boosts in performance, such as scale, instruction-tuning, a tweak to the attention

mechanisms, and more and different training data. First and foremost, the massive
scaling in parameters from 1.5 billion (GPT-2) to 175 billion (GPT-3) to more than a
trillion (GPT-4) enables models to learn more complex patterns; however, another major
change in early 2022 was the post-training fine-tuning of models based on human
instructions, which teaches the model how to perform a task by providing
demonstrations and feedback.

Across benchmarks, a few models have recently started to perform better than an
average human rater, but generally still haven’t reached the performance of a human
expert. These achievements of human engineering are impressive; however, it should be
noted that the performance of these models depends on the field; most models are still
performing poorly on the GSM8K benchmark of grade school math word problems.

Generative Pre-trained Transformer (GPT) models, like OpenAI’s GPT-4, are prime
examples of AI advancements in the sphere of LLMs. ChatGPT has been widely adopted
by the general public, showing greatly improved chatbot capabilities enabled by being
much bigger than previous models. These AI-based chatbots can generate human-like
responses as real-time feedback to customers and can be applied to a wide range of use
cases, from software development to writing poetry and business communications.

As AI models like OpenAI’s GPT continue to improve, they could become indispensable
assets to teams in need of diverse knowledge and skills.

For example, GPT-4 could be considered a polymath that works tirelessly without
demanding compensation (beyond subscription or API fees), providing competent
assistance in subjects like mathematics and statistics, macroeconomics, biology, and law
(the model performs well on the Uniform Bar Exam). As these AI models become more
proficient and easily accessible, they are likely to play a significant role in shaping the
future of work and learning.

OpenAI is a US AI research company that aims to promote and develop
friendly AI. It was established in 2015 with the support of several
influential figures and companies, who pledged over $1 billion to the
venture. The organization initially committed to being non-profit,
collaborating with other institutions and researchers by making its

patents and research open to the public. In 2018, Elon Musk resigned
from the board citing a potential conflict of interest with his role at Tesla.
In 2019, OpenAI transitioned to become a for-profit organization, and
subsequently Microsoft made significant investments in OpenAI, leading
to the integration of OpenAI systems with Microsoft’s Azure-based
supercomputing platform and the Bing search engine. The most
significant achievements of the company include OpenAI Gym for
training reinforcement algorithms, and – more recently – the GPT-n
models and the DALL-E generative models, which generate images from
text.

By making knowledge more accessible and adaptable, these models have the potential to
level the playing field and create new opportunities for people from all walks of life.
These models have shown potential in areas that require higher levels of reasoning and
understanding, although progress varies depending on the complexity of the tasks
involved.

As for generative models with images, they have pushed the boundaries in their
capabilities to assist in creating visual content, and their performance in computer vision
tasks such as object detection, segmentation, captioning, and much more.

Let’s clear up the terminology a bit and explain in more detail what is meant by
generative model, artificial intelligence, deep learning, and machine learning.

What are generative models?

In popular media, the term artificial intelligence is used a lot when referring to these new
models. In theoretical and applied research circles, it is often joked that AI is just a fancy
word for ML, or AI is ML in a suit, as illustrated in this image:

Figure 1.2: ML in a suit. Generated by a model on replicate.com, Diffusers Stable Diffusion v2.1

It’s worth distinguishing more clearly between the terms generative model, artificial
intelligence, machine learning, deep learning, and language model:

Artificial Intelligence (AI) is a broad field of computer science focused on
creating intelligent agents that can reason, learn, and act autonomously.
Machine Learning (ML) is a subset of AI focused on developing algorithms that
can learn from data.
Deep Learning (DL) uses deep neural networks, which have many layers, as a
mechanism for ML algorithms to learn complex patterns from data.
Generative Models are a type of ML model that can generate new data based on
patterns learned from input data.
Language Models (LMs) are statistical models used to predict words in a sequence
of natural language. Some language models utilize deep learning and are trained on
massive datasets, becoming large language models (LLMs).

This class diagram illustrates how LLMs combine deep learning techniques like neural
networks with sequence modeling objectives from language modeling, at a very large
scale:

Figure 1.3: Class diagram of different models. LLMs represent the intersection of deep learning techniques with
language modeling objectives.

Generative models are a powerful type of AI that can generate new data that resembles
the training data. Generative AI models have come a long way, enabling the generation
of new examples from scratch using patterns in data. These models can handle different
data modalities and are employed across various domains, including text, image, music,
and video.

The key distinction is that generative models synthesize new data rather than just
making predictions or decisions. This enables applications like generating text, images,
music, and video.

Some language models are generative, while some are not. Generative models facilitate
the creation of synthetic data to train AI models when real data is scarce or restricted.
This type of data generation reduces labeling costs and improves training efficiency.
Microsoft Research took this approach (Textbooks Are All You Need, June 2023) to
training their phi-1 model, where they used GPT-3.5 to create synthetic Python
textbooks and exercises.

There are many types of generative models, handling different data modalities across
various domains. They are:

Text-to-text: Models that generate text from input text, like conversational agents.
Examples: LLaMa 2, GPT-4, Claude, and PaLM 2.
Text-to-image: Models that generate images from text captions. Examples: DALL-
E 2, Stable Diffusion, and Imagen.

Text-to-audio: Models that generate audio clips and music from text. Examples:
Jukebox, AudioLM, and MusicGen.
Text-to-video: Models that generate video content from text descriptions. Example:
Phenaki and Emu Video.
Text-to-speech: Models that synthesize speech audio from input text. Examples:
WaveNet and Tacotron.
Speech-to-text: Models that transcribe speech to text [also called Automatic
Speech Recognition (ASR)]. Examples: Whisper and SpeechGPT.
Image-to-text: Models that generate image captions from images. Examples: CLIP
and DALL-E 3.
Image-to-image: Applications for this type of model are data augmentation such as
super-resolution, style transfer, and inpainting.
Text-to-code: Models that generate programming code from text. Examples: Stable
Diffusion and DALL-E 3.
Video-to-audio: Models that analyze video and generate matching audio. Example:
Soundify.

There are a lot more combinations of modalities to consider; these are just some that I
have come across. Further, we could consider subcategories of text, such as text-to-math,
which generates mathematical expressions from text, where some models such as
ChatGPT and Claude shine, or text-to-code, which are models that generate
programming code from text, such as AlphaCode or Codex. A few models are
specialized in scientific text, such as Minerva or Galactica, or algorithm discovery, such
as AlphaTensor.

A few models work with several modalities for input or output. An example of a model
that demonstrates generative capabilities in multimodal input is OpenAI’s GPT-4V
model (GPT-4 with vision), released in September 2023, which takes both text and
images and comes with better Optical Character Recognition (OCR) than previous
versions to read text from images. Images can be translated into descriptive words, then
existing text filters are applied. This mitigates the risk of generating unconstrained
image captions.

As the list shows, text is a common input modality that can be converted into various
outputs like image, audio, and video. The outputs can also be converted back into text or
within the same modality. LLMs have driven rapid progress for text-focused domains.
These models enable a diverse range of capabilities via different modalities and
domains. The LLM categories are the main focus of this book; however, we’ll also
occasionally look at other models, text-to-image in particular. These models typically
use a Transformer architecture trained on massive datasets via self-supervised learning.

The rapid progress shows the potential of generative AI across diverse domains. Within
the industry, there is a growing sense of excitement around AI’s capabilities and its
potential impact on business operations. But there are key challenges such as data
availability, compute requirements, bias in data, evaluation difficulties, potential misuse,
and other societal impacts that need to be addressed going forward, which we’ll discuss
in Chapter 10, The Future of Generative Models.

Let’s delve a bit more into this progress and pose the question why now ?

Why now?

The success of generative AI coming into the public spotlight in 2022 can be attributed
to several interlinked drivers. The development and success of generative models have
relied on improved algorithms, considerable advances in compute power and hardware
design, the availability of large, labeled datasets, and an active and collaborative
research community helping to evolve a set of tools and techniques.

Developing more sophisticated mathematical and computational methods has played a
vital role in advancing generative models. The backpropagation algorithm introduced in
the 1980s by Geoffrey Hinton, David Rumelhart, and Ronald Williams is one such
example. It provided a way to effectively train multi-layer neural networks.

In the 2000s, neural networks began to regain popularity as researchers developed more
complex architectures. However, it was the advent of DL, a type of neural network with
numerous layers, that marked a significant turning point in the performance and
capabilities of these models. Interestingly, although the concept of DL has existed for
some time, the development and expansion of generative models correlate with

significant advances in hardware, particularly Graphics Processing Units (GPUs),
which have been instrumental in propelling the field forward.

As mentioned, the availability of cheaper and more powerful hardware has been a key
factor in the development of deeper models. This is because DL models require a lot of
computing power to train and run. This concerns all aspects of processing power,
memory, and disk space. This graph shows the cost of computer storage over time for
different mediums such as disks, solid state, flash, and internal memory in terms of price
in dollars per terabyte (adapted from Our World in Data by Max Roser, Hannah Ritchie,
and Edouard Mathieu;
https://ourworldindata.org/grapher/historical-cost-of-

computer-memory-and-storage:

Figure 1.4: Cost of computer storage since the 1950s in dollars (unadjusted) per terabyte

While, in the past, training a DL model was prohibitively expensive, as the cost of
hardware has come down, it has become possible to train bigger models on much larger
datasets. The model size is one of the factors determining how well a model can
approximate (as measured in perplexity) the training dataset.

The importance of the number of parameters in an LLM: The more
parameters a model has, the higher its capacity to capture relationships
between words and phrases as knowledge. As a simple example of these

https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage

higher-order correlations, an LLM could learn that the word “cat” is
more likely to be followed by the word “dog” if it is preceded by the
word “chase,” even if there are other words in between. Generally, the
lower a model’s perplexity, the better it will perform, for example, in
terms of answering questions.

Particularly, it seems that in models with between 2 and 7 billion
parameters, new capabilities emerge such as the ability to generate
different creative text in formats like poems, code, scripts, musical
pieces, emails, and letters, and to answer even open-ended and
challenging questions in an informative way.

This trend toward larger models started around 2009, when NVIDIA catalyzed what is
often called the Big Bang of DL. GPUs are particularly well suited for the matrix/vector
computations necessary to train deep learning neural networks, therefore significantly
increasing the speed and efficiency of these systems by several orders of magnitude and
reducing running times from weeks to days. In particular, NVIDIA’s CUDA platform,
which allows direct programming of GPUs, has made it easier than ever for researchers
and developers to experiment with and deploy complex generative models facilitating
breakthroughs in vision, speech recognition, and – more recently – LLMs. Many LLM
papers describe the use of NVIDIA A100s for training.

In the 2010s, several types of generative models started gaining traction. Autoencoders,
a kind of neural network that can learn to compress data from the input layer to a
representation, and then reconstruct the input, served as a basis for more advanced
models like Variational Autoencoders (VAEs), which were first proposed in 2013.
VAEs, unlike traditional autoencoders, use variational inference to learn the distribution
of data, also called the latent space of input data. Around the same time, GANs were
proposed by Ian Goodfellow and others in 2014.

Over the past decade, significant advancements have been made in the fundamental
algorithms used in DL, such as better optimization methods, more sophisticated model
architectures, and improved regularization techniques. Transformer models, introduced
in 2017, built upon this progress and enabled the creation of large-scale models like
GPT-3. Transformers rely on attention mechanisms and resulted in a further leap in the

performance of generative models. These models, such as Google’s BERT and OpenAI’s
GPT series, can generate highly coherent and contextually relevant text.

The development of transfer learning techniques, which allow a model pre-trained on
one task to be fine-tuned on another, similar task, has also been significant. These
techniques have made it more efficient and practical to train large generative models.
Moreover, part of the rise of generative models can be attributed to the development of
software libraries and tools (TensorFlow, PyTorch, and Keras) specifically designed to
work with these artificial neural networks, streamlining the process of building, training,
and deploying them.

In addition to the availability of cheaper and more powerful hardware, the availability of
large datasets of labeled data has also been a key factor in the development of generative
models. This is because DL models, particularly generative ones, require vast amounts
of text data for effective training. The explosion of data available from the internet,
particularly in the last decade, has created a suitable environment for such models to
thrive. As the internet has become more popular, it has become easier to collect large
datasets of text, images, and other data.

This has made it possible to train generative models on much larger datasets than would
have been possible in the past. To further drive the development of generative models,
the research community has been developing benchmarks and other challenges, like the
mentioned MMLU and ImageNet for image classification, and has started to do the same
for generative models.

In summary, generative modeling is a fascinating and rapidly evolving field. It has the
potential to revolutionize the way we interact with computers and create original
content. I am excited to see what the future holds for this field.

Understanding LLMs

Text generation models, such as GPT-4 by OpenAI, can generate coherent and
grammatically correct text in different languages and formats. These models have
practical applications in fields like content creation and NLP, where the ultimate goal is
to create algorithms capable of understanding and generating natural language text.

Language modeling aims to predict the next word, character, or even sentence based on
the previous ones in a sequence. In this sense, language modeling serves as a way of
encoding the rules and structures of a language in a way that can be understood by a
machine. LLMs capture the structure of human language in terms of grammar, syntax,
and semantics. These models form the backbone of larger NLP tasks, such as content
creation, translation, summarization, machine translation, and text-editing tasks such as
spelling correction.

At its core, language modeling, and more broadly NLP, relies heavily on the quality of
representation learning. A generative language model encodes information about the text
that it has been trained on and generates new text based on those learnings, thereby
taking on the task of text generation.

Representation learning is about a model learning its internal
representations of raw data to perform a machine learning task, rather
than relying only on engineered feature extraction. For example, an
image classification model based on representation learning might learn
to represent images according to visual features like edges, shapes, and
textures. The model isn’t told explicitly what features to look for – it
learns representations of the raw pixel data that help it make predictions.

Recently, LLMs have found applications for tasks like essay generation, code
development, translation, and understanding genetic sequences. More broadly,
applications of language models involve multiple areas, such as:

Question answering: AI chatbots and virtual assistants can provide personalized
and efficient assistance, reducing response times in customer support and thereby
enhancing customer experience. These systems can be used in specific contexts like
restaurant reservations and ticket booking.
Automatic summarization: Language models can create concise summaries of
articles, research papers, and other content, enabling users to consume and
understand information rapidly.
Sentiment analysis: By analyzing opinions and emotions in texts, language models
can help businesses understand customer feedback and opinions more efficiently.

Topic modeling: LLMs can discover abstract topics and themes across a corpus of
documents. It identifies word clusters and latent semantic structures.
Semantic search: LLMs can focus on understanding meaning within individual
documents. It uses NLP to interpret words and concepts for improved search
relevance.
Machine translation: Language models can translate texts from one language into
another, supporting businesses in their global expansion efforts. New generative
models can perform on par with commercial products (for example, Google
Translate).

Despite the remarkable achievements, language models still face limitations when
dealing with complex mathematical or logical reasoning tasks. It remains uncertain
whether continually increasing the scale of language models will inevitably lead to new
reasoning capabilities. Further, LLMs are known to return the most probable answers
within the context, which can sometimes yield fabricated information, termed
hallucinations. This is a feature as well as a bug since it highlights their creative
potential. We’ll talk about hallucinations in Chapter 5, Building a Chatbot Like
ChatGPT, but for now, let’s discuss the technical background of LLMs in some more
detail.

What is a GPT?

LLMs are deep neural networks adept at understanding and generating human language.
The current generation of LLMs such as ChatGPT are deep neural network architectures
that utilize the transformer model and undergo pre-training using unsupervised learning
on extensive text data, enabling the model to learn language patterns and structures.
Models have evolved rapidly, enabling the creation of versatile foundational AI models
suitable for a wide range of downstream tasks and modalities, ultimately driving
innovation across various applications and industries.

The notable strength of the latest generation of LLMs as conversational interfaces
(chatbots) lies in their ability to generate coherent and contextually appropriate
responses, even in open-ended conversations. By generating the next word based on the
preceding words repeatedly, the model produces fluent and coherent text often

indistinguishable from text produced by humans. However, ChatGPT has been observed
to “sometimes write plausible sounding but incorrect or nonsensical answers,” as
expressed in a disclaimer by OpenAI. This is referred to as a hallucination and is just
one of the concerns around LLMs.

A transformer is a DL architecture, first introduced in 2017 by researchers at Google
and the University of Toronto (in an article called Attention Is All You Need; Vaswani
and colleagues), that comprises self-attention and feed-forward neural networks,
allowing it to effectively capture the word relationships in a sentence. The attention
mechanism enables the model to focus on various parts of the input sequence.

Generative Pre-Trained Transformers (GPTs), on the other hand, were introduced by
researchers at OpenAI in 2018 together with the first of their eponymous GPT models,
GPT-1 (Improving Language Understanding by Generative Pre-Training; Radford and
others). The pre-training process involves predicting the next word in a text sequence,
enhancing the model’s grasp of language as measured in the quality of the output.
Following pre-training, the model can be fine-tuned for specific language processing
tasks like sentiment analysis, language translation, or chat. This combination of
unsupervised and supervised learning enables GPT models to perform better across a
range of NLP tasks and reduces the challenges associated with training LLMs.

The size of the training corpus for LLMs has been increasing drastically. GPT-1,
introduced by OpenAI in 2018, was trained on BookCorpus with 985 million words.
BERT, released in the same year, was trained on a combined corpus of BookCorpus and
English Wikipedia, totaling 3.3 billion words. Now, training corpora for LLMs reach up
to trillions of tokens.

This graph illustrates how LLMs have been growing:

Figure 1.5: LLMs from BERT to GPT-4 – size, training budget, and organizations. For the proprietary models,
parameter sizes are often estimates.

The size of the data points indicates training cost in terms of petaFLOPs and
petaFLOP/s-days. A petaFLOP/s day is a unit of throughput that consists of performing
10 to the power of 15 operations per day. Training operations in the calculations are
estimated as the approximate number of addition and multiplication operations based on
the GPU utilization efficiency.

For some models, especially proprietary and closed-source models, this information is
not known – in these cases, I’ve placed a cross. For example, for XLNet, the paper
doesn’t give information about compute in flops; however, the training was done on 512
TPU v3 chips over 2.5 days.

The development of GPT models has seen considerable progress, with OpenAI’s GPT-n
series leading the way in creating foundational AI models. GPT models can also work
with modalities beyond text for input and output, as seen in GPT-4’s ability to process
image input alongside text. Additionally, they serve as a foundation for text-to-image

technologies like diffusion and parallel decoding, enabling the development of Visual
Foundation Models (VFMs) for systems that work with images.

A foundation model (sometimes known as a base model) is a large
model that was trained on an immense quantity of data at scale so that it
can be adapted to a wide range of downstream tasks. In GPT models,
this pre-training is done via self-supervised learning.

Trained on 300 billion tokens, GPT-3 has 175 billion parameters, an unprecedented size
for DL models. GPT-4 is the most recent in the series, though its size and training details
have not been published due to competitive and safety concerns. However, different
estimates suggest it has between 200 and 500 billion parameters. Sam Altman, the CEO
of OpenAI, has stated that the cost of training GPT-4 was more than $100 million.

ChatGPT, a conversation model, was released by OpenAI in November 2022. Based on
prior GPT models (particularly GPT-3) and optimized for dialogue, it uses a combination
of human-generated roleplaying conversations and a dataset of human labeler
demonstrations of the desired model behavior. The model exhibits excellent capabilities
such as wide-ranging knowledge retention and precise context tracking in multi-turn
dialogues.

Another substantial advancement came in March 2023 with GPT-4. GPT-4 provides
superior performance on various evaluation tasks coupled with significantly better
response avoidance to malicious or provocative queries due to six months of iterative
alignment during training.

OpenAI has been coy about the technical details; however, information has been
circulating that, with about 1.8 trillion parameters, GPT-4 is more than 10x the size of
GPT-3. Further, OpenAI was able to keep costs reasonable by utilizing a Mixture of
Experts (MoE) model consisting of 16 experts within their model, each having about
111 billion parameters.

Apparently, GPT-4 was trained on about 13 trillion tokens. However, these are not
unique tokens since they count repeated presentation of the data in each epoch. Training
was conducted for 2 epochs for text-based data and 4 for code-based data. For fine-

tuning, the dataset consisted of millions of rows of instruction fine-tuning data. Another
rumor, again to be taken with a grain of salt, is that OpenAI might be applying
speculative decoding on GPT-4’s inference, with the idea that a smaller model (oracle
model) could be predicting the large model’s responses, and these predicted responses
could help speed up decoding by feeding them into the larger model, thereby skipping
tokens. This is a risky strategy because – depending on the threshold of the confidence
of the oracle’s responses – the quality could deteriorate.

There’s also a multi-modal version of GPT-4 that incorporates a separate vision encoder,
trained on joined image and text data, giving the model the capability to read web pages
and transcribe what’s in images and video.

As can be seen in Figure 1.5, there are quite a few models besides OpenAI’s, some of
which are suitable as a substitute for the OpenAI closed-source models, which we will
have a look at.

Other LLMs

Other notable foundational GPT models besides OpenAI’s include Google DeepMind’s
PaLM 2, the model behind Google’s chatbot Bard. Although GPT-4 leads most
benchmarks in performance, these and other models demonstrate a comparable
performance in some tasks and have contributed to advancements in generative
transformer-based language models.

PaLM 2, released in May 2023, was trained with the focus of improving multilingual
and reasoning capabilities while being more compute efficient. Using evaluations at
different compute scales, the authors (Anil and others; PaLM 2 Technical Report)
estimated an optimal scaling of training data sizes and parameters. PaLM 2 is smaller
and exhibits faster and more efficient inference, allowing for broader deployment and
faster response times for a more natural pace of interaction.

Extensive benchmarking across different model sizes has shown that PaLM 2 has
significantly improved quality on downstream tasks, including multilingual common
sense and mathematical reasoning, coding, and natural language generation, compared to
its predecessor PaLM.

PaLM 2 was also tested on various professional language-proficiency exams. The exams
used were for Chinese (HSK 7-9 Writing and HSK 7-9 Overall), Japanese (J-Test A-C
Overall), Italian (PLIDA C2 Writing and PLIDA C2 Overall), French (TCF Overall), and
Spanish (DELE C2 Writing and DELE C2 Overall). Across these exams, which were
designed to test C2-level proficiency, considered mastery or advanced professional level
according to the CEFR (Common European Framework of Reference for
Languages), PaLM 2 achieved mostly high-passing grades.

The releases of the LLaMa and LLaMa 2 series of models, with up to 70B parameters,
by Meta AI in February and July 2023, respectively, have been highly influential by
enabling the community to build on top of them, thereby kicking off a Cambrian
explosion of open-source LLMs. LLaMa triggered the creation of models such as
Vicuna, Koala, RedPajama, MPT, Alpaca, and Gorilla. LLaMa 2, since its recent release,
has already inspired several very competitive coding models, such as WizardCoder.

Optimized for dialogue use cases, at their release, the LLMs outperformed other open-
source chat models on most benchmarks and seem on par with some closed-source
models based on human evaluations. The LLaMa 2 70B model performs on par or better
than PaLM (540B) on almost all benchmarks, but there is still a large performance gap
between LLaMa 2 70B and GPT-4 and PaLM-2-L.

LLaMa 2 is an updated version of LLaMa 1 trained on a new mix of publicly available
data. The pre-training corpus size has increased by 40% (2 trillion tokens of data), the
context length of the model has doubled, and grouped-query attention has been adopted.

Variants of LLaMa 2 with different parameter sizes (7B, 13B, 34B, and 70B) have been
released. While LLaMa was released under a non-commercial license, the LLaMa 2 are
open to the general public for research and commercial use.

LLaMa 2-Chat has undergone safety evaluation results compared to other open-source
and closed-source models. Human raters judged the safety violations of model
generations across approximately 2,000 adversarial prompts, including both single and
multi-turn prompts.

Claude and Claude 2 are AI assistants created by Anthropic. Evaluations suggest
Claude 2, released in July 2023, is one of the best GPT-4 competitors in the market. It
improves on previous versions in helpfulness, honesty, and lack of stereotype bias based

on human feedback comparisons. It also performs well on standardized tests like GRE
and MBE. Key model improvements include an expanded context size of up to 200K
tokens, far larger than most available models, and being commercial or open source. It
also performs better on use cases like coding, summarization, and long document
understanding.

The model card Anthropic has created is fairly detailed, showing Claude 2 still has
limitations in areas like confabulation, bias, factual errors, and potential for misuse,
problems it has in common with all LLMs. Anthropic is working to address these
through techniques like data filtering, debiasing, and safety interventions.

The development of LLMs has been limited to a few players due to high computational
requirements. In the next section, we’ll look into who these organizations are.

Major players

Training a large number of parameters on large-scale datasets requires significant
compute power and a skilled data science and data engineering team. Meta’s LLaMa 2
model, with a size of up to 70 billion parameters, was trained on 1.4 trillion tokens,
while PaLM 2, reportedly consisting of 340 billion parameters – smaller than their
previous LLMs – appears to have a larger scale of training data in at least 100 languages.
Modern LLMs can cost anywhere from 10 million to over 100 million US dollars in
computing costs for training.

Only a few companies, such as those shown in Figure 1.5, have been able to
successfully train and deploy very large models. Major companies like Microsoft and
Google have invested in start-ups and collaborations to support the development of these
models. Universities, such as KAUST, Carnegie Mellon University, Nanyang
Technological University, and Tel Aviv University, have also contributed to the
development of these models. Some projects are developed through collaborations
between companies and universities, as seen in the cases of Stable Diffusion, Soundify,
and DreamFusion.

There are quite a few companies and organizations developing
generative AI in general, as well as LLMs, and they are releasing them

on different terms – here’s just a few:

OpenAI have released GPT-2 as open source; however, subsequent
models have been closed source but open for public usage on their
website or through an API.
Google (including Google’s DeepMind division) have developed a
number of LLMs, starting from BERT and – more recently –
Chinchilla, Gopher, PaLM, and PaLM2. They previously released
the code and weights (parameters) of a few of their models under
open-source licensing, even though recently they have moved
toward more secrecy in their development.
Anthropic have released the Claude and Claude 2 models for
public usage on their website. The API is in private beta. The
models themselves are closed source.
Meta have released models like RoBERTa, BART, and LLaMa 2,
including parameters of the models (although often under a non-
commercial license) and the source code for setting up and training
the models.
Microsoft have developed models like Turing-NLG and Megatron-
Turing NLG but have focused on integrating OpenAI models into
products over releasing their own models. The training code and
parameters for phi-1 have been released for research use.
Stability AI, the company behind Stable Diffusion, released the
model weights under a non-commercial license.
The French AI startup Mistral has unveiled its free-to-use, open-
license 7B model, outperforming similar-sized models, generated
from private datasets, and developed with the intent to support the
open generative AI community, while also offering commercial
products.
EleutherAI is a grassroots collection of researchers developing
open-access models like GPT-Neo and GPT-J, fully open source
and available to the public.

Aleph Alpha, Alibaba, and Baidu are providing API access or
integrating their models into products rather than releasing
parameters or training code.

There are a few more notable institutions, such as the Technology
Innovation Institute (TII), an Abu Dhabi government-funded research
institution, which open-sourced Falcon LLM for research and
commercial usage.

The complexity of estimating parameters in generative AI models suggests that smaller
companies or organizations without sufficient computation power and expertise may
struggle to deploy these models successfully; although, recently, after the publication of
the LLaMa models, we’ve seen smaller companies making significant breakthroughs,
for example, in terms of coding ability.

In the next section, we’ll review the progress that DL and generative models have been
making over recent years that has led up to the current explosion of their apparent
capabilities and the attention these models have been getting.

Let’s get into the nitty-gritty details – how do these LLMs work under the hood? How
do GPT models work?

How do GPT models work?

Generative pre-training has been around for a while, employing methods such as
Markov models or other techniques. However, language models such as BERT and GPT
were made possible by the transformer deep neural network architecture (Vaswani and
others, Attention Is All You Need, 2017), which has been a game-changer for NLP.
Designed to avoid recursion to allow parallel computation, the Transformer architecture,
in different variations, continues to push the boundaries of what’s possible within the
field of NLP and generative AI.

Transformers have pushed the envelope in NLP, especially in translation and language
understanding. Neural Machine Translation (NMT) is a mainstream approach to
machine translation that uses DL to capture long-range dependencies in a sentence.

Models based on transformers outperformed previous approaches, such as using
recurrent neural networks, particularly Long Short-Term Memory (LSTM) networks.

The transformer model architecture has an encoder-decoder structure, where the encoder
maps an input sequence to a sequence of hidden states, and the decoder maps the hidden
states to an output sequence. The hidden state representations consider not only the
inherent meaning of the words (their semantic value) but also their context in the
sequence.

The encoder is made up of identical layers, each with two sub-layers. The input
embedding is passed through an attention mechanism, and the second sub-layer is a fully
connected feed-forward network. Each sub-layer is followed by a residual connection
and layer normalization. The output of each sub-layer is the sum of the input and the
output of the sub-layer, which is then normalized.

The decoder uses this encoded information to generate the output sequence one item at a
time, using the context of the previously generated items. It also has identical modules,
with the same two sub-layers as the encoder.

In addition, the decoder has a third sub-layer that performs Multi-Head Attention
(MHA) over the output of the encoder stack. The decoder also uses residual connections
and layer normalization. The self-attention sub-layer in the decoder is modified to
prevent positions from attending to subsequent positions. This masking, combined with
the fact that the output embeddings are offset by one position, ensures that the
predictions for position i can only depend on the known outputs at positions less than i.
These are indicated in the diagram here (source: Yuening Jia, Wikimedia Commons):

Figure 1.6: The Transformer architecture

The architectural features that have contributed to the success of transformers are:

Positional encoding: Since the transformer doesn’t process words sequentially but
instead processes all words simultaneously, it lacks any notion of the order of
words. To remedy this, information about the position of words in the sequence is
injected into the model using positional encodings. These encodings are added to
the input embeddings representing each word, thus allowing the model to consider
the order of words in a sequence.
Layer normalization: To stabilize the network’s learning, the transformer uses a
technique called layer normalization. This technique normalizes the model’s inputs
across the features dimension (instead of the batch dimension as in batch
normalization), thus improving the overall speed and stability of learning.
Multi-head attention: Instead of applying attention once, the transformer applies it
multiple times in parallel – improving the model’s ability to focus on different types
of information and thus capturing a richer combination of features.

A key reason for the success of transformers has been their ability to maintain
performance across longer sequences better than other models, for example, recurrent
neural networks.

The basic idea behind attention mechanisms is to compute a weighted sum of the values
(usually referred to as values or content vectors) associated with each position in the
input sequence, based on the similarity between the current position and all other
positions. This weighted sum, known as the context vector, is then used as an input to
the subsequent layers of the model, enabling the model to selectively attend to relevant
parts of the input during the decoding process.

To enhance the expressiveness of the attention mechanism, it is often extended to
include multiple so-called heads, where each head has its own set of query, key, and
value vectors, allowing the model to capture various aspects of the input representation.
The individual context vectors from each head are then concatenated or combined in
some way to form the final output.

Early attention mechanisms scaled quadratically with the length of the sequences
(context size), rendering them inapplicable to settings with long sequences. Different
mechanisms have been tried out to alleviate this. Many LLMs use some form of Multi-
Query Attention (MQA), including OpenAI’s GPT-series models, Falcon, SantaCoder,
and StarCoder.

MQA is an extension of MHA, where attention computation is replicated multiple times.
MQA improves the performance and efficiency of language models for various language
tasks. By removing the heads dimension from certain computations and optimizing
memory usage, MQA allows for 11 times better throughput and 30% lower latency in
inference tasks compared to baseline models without MQA.

LLaMa 2 and a few other models used Grouped-Query Attention (GQA), which is a
practice used in autoregressive decoding to cache the key (K) and value (V) pairs for the
previous tokens in the sequence, speeding up attention computation. However, as the
context window or batch sizes increase, the memory costs associated with the KV cache
size in MHA models also increase significantly. To address this, the key and value
projections can be shared across multiple heads without much degradation of
performance.

There have been many other proposed approaches to obtain efficiency gains, such as
sparse, low-rank self-attention, and latent bottlenecks, to name just a few. Other work
has tried to extend sequences beyond the fixed input size; architectures such as
transformer-XL reintroduce recursion by storing hidden states of already encoded
sentences to leverage them in the subsequent encoding of the next sentences.

The combination of these architectural features allows GPT models to successfully
tackle tasks that involve understanding and generating text in human language and other
domains. The overwhelming majority of LLMs are transformers, as are many other
state-of-the-art models we will encounter in the different sections of this chapter,
including models for image, sound, and 3D objects.

As the name suggests, a particularity of GPTs lies in pre-training. Let’s see how these
LLMs are trained!

Pre-training

The transformer is trained in two phases using a combination of unsupervised pre-
training and discriminative task-specific fine-tuning. The goal during pre-training is to
learn a general-purpose representation that transfers to a wide range of tasks.

The unsupervised pre-training can follow different objectives. In Masked Language
Modeling (MLM), introduced in BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding by Devlin and others (2019), the input is
masked out, and the model attempts to predict the missing tokens based on the context
provided by the non-masked portion. For example, if the input sentence is “The cat
[MASK] over the wall,” the model would ideally learn to predict “jumped” for the mask.

In this case, the training objective minimizes the differences between predictions and the
masked tokens according to a loss function. Parameters in the models are then iteratively
updated according to these comparisons.

Negative Log-Likelihood (NLL) and Perplexity (PPL) are important metrics used in
training and evaluating language models. NLL is a loss function used in ML algorithms,
aimed at maximizing the probability of correct predictions. A lower NLL indicates that
the network has successfully learned patterns from the training set, so it will accurately

predict the labels of the training samples. It’s important to mention that NLL is a value
constrained within a positive interval.

PPL, on the other hand, is an exponentiation of NLL, providing a more intuitive way to
understand the model’s performance. Smaller PPL values indicate a well-trained
network that can predict accurately while higher values indicate poor learning
performance. Intuitively, we could say that a low perplexity means that the model is less
surprised by the next word. Therefore, the goal in pre-training is to minimize perplexity,
which means the model’s predictions align more with the actual outcomes.

In comparing different language models, perplexity is often used as a benchmark metric
across various tasks. It gives an idea about how well the language model is performing,
where a lower perplexity indicates the model is more certain of its predictions. Hence, a
model with lower perplexity would be considered better performing in comparison to
others with higher perplexity.

The first step in training an LLM is tokenization. This process involves building a
vocabulary, which maps tokens to unique numerical representations so that they can be
processed by the model, given that LLMs are mathematical functions that require
numerical inputs and outputs.

Tokenization

Tokenizing a text means splitting it into tokens (words or subwords), which then are
converted to IDs through a look-up table mapping words in text to corresponding lists of
integers.

Before training the LLM, the tokenizer – more precisely, its dictionary – is typically
fitted to the entire training dataset and then frozen. It’s important to note that tokenizers
do not produce arbitrary integers. Instead, they output integers within a specific range –
from to , where represents the vocabulary size of the tokenizer.

Definitions:

Token: A token is an instance of a sequence of characters, typically
forming a word, punctuation mark, or number. Tokens serve as the base
elements for constructing sequences of text.

Tokenization: This refers to the process of splitting text into tokens. A
tokenizer splits on whitespace and punctuation to break text into
individual tokens.

Examples:

Consider the following text:

“The quick brown fox jumps over the lazy dog!”

This would get split into the following tokens:

[“The”, “quick”, “brown”, “fox”, “jumps”, “over”, “the”, “lazy”, “dog”,
“!”]

Each word is an individual token, as is the punctuation mark.

There are a lot of tokenizers that work according to different principles, but common
types of tokenizers employed in models are Byte-Pair Encoding (BPE), WordPiece,
and SentencePiece. For example, LLaMa 2’s BPE tokenizer splits numbers into
individual digits and uses bytes to decompose unknown UTF-8 characters. The total
vocabulary size is 32K tokens.

It is necessary to point out that LLMs can only generate outputs based on a sequence of
tokens that does not exceed its context window. This context window refers to the length
of the longest sequence of tokens that an LLM can use. Typical context window sizes for
LLMs can range from about 1,000 to 10,000 tokens.

Next, it is worth talking at least briefly about the scale of these architectures, and why
these models are as large as they are.

Scaling

As we’ve seen in Figure 1.5, language models have been becoming bigger over time.
That corresponds to a long-term trend in machine learning that models get bigger as
computing resources get cheaper, enabling higher performance. In a paper from 2020 by
researchers from OpenAI, Kaplan and others (Scaling laws for neural language models,
2020) discussed scaling laws and the choice of parameters.

Interestingly, they compare lots of different architecture choices and, among other
things, show that transformers outperform LSTMs as language models in terms of
perplexity in no small part due to the improved use of long contexts. While recurrent
networks plateau after less than 100 tokens, transformers improve throughout the whole
context. Therefore, transformers not only come with better training and inference speed
but also give better performance when looking at relevant contexts.

Further, they found a power-law relationship between performance and each of the
following factors: dataset size, model size (number of parameters), and the amount of
computational resources required for training. This implies that to improve performance
by a certain factor, one of these elements must be scaled up by the power of that factor;
however, for optimal performance, all three factors must be scaled in tandem to avoid
bottlenecks.

Researchers at DeepMind (An empirical analysis of compute-optimal large language
model training; Hoffmann and others, 2022) analyzed the training compute and dataset
size of LLMs and concluded that LLMs are undertrained in terms of compute budget
and dataset size as suggested by scaling laws.

They predicted that large models would perform better if substantially smaller and
trained for much longer, and – in fact – validated their prediction by comparing a 70-
billion-parameter Chinchilla model on a benchmark to their Gopher model, which
consists of 280 billion parameters.

However, more recently, a team at Microsoft Research has challenged these conclusions
and surprised everyone (Textbooks Are All You Need; Gunaseka and colleagues, June
2023), finding that a small network (350M parameters) trained on high-quality datasets
can give very competitive performance. We’ll discuss this model again in Chapter 6,
Developing Software with Generative AI, and we’ll discuss the implications of scaling in
Chapter 10, The Future of Generative Models.

It will be instructive to observe whether model sizes for LLMs keep increasing at the
same rate as they have. This is an important question since it determines if the
development of LLMs will be firmly in the hands of large organizations. It could be that
there’s a saturation of performance at a certain size, which only changes in the approach

can overcome. However, we could see new scaling laws linking performance with data
quality.

After pre-training, a major step is how models are prepared for specific tasks either by
fine-tuning or prompting. Let’s see what this task conditioning is about!

Conditioning

Conditioning LLMs refers to adapting the model for specific tasks. It includes fine-
tuning and prompting:

Fine-tuning involves modifying a pre-trained language model by training it on a
specific task using supervised learning. For example, to make a model more
amenable to chats with humans, the model is trained on examples of tasks
formulated as natural language instructions (instruction tuning). For fine-tuning,
pre-trained models are usually trained again using Reinforcement Learning from
Human Feedback (RLHF) to be helpful and harmless.

Prompting techniques present problems in text form to generative models. There
are a lot of different prompting techniques, starting from simple questions to
detailed instructions. Prompts can include examples of similar problems and their
solutions. Zero-shot prompting involves no examples, while few-shot prompting
includes a small number of examples of relevant problem and solution pairs.

These conditioning methods continue to evolve, becoming more effective and useful for
a wide range of applications. Prompt engineering and conditioning methods will be
explored further in Chapter 8, Customizing LLMs and Their Output.

How to try out these models

You can access OpenAI’s model through their website or their API. If you want to try
other LLMs on your laptop, open-source LLMs are a good place to get started. There is
a whole zoo of stuff out there!

You can access these models through Hugging Face or other providers, as we’ll see
starting in Chapter 3, Getting Started with LangChain. You can even download these

open-source models, fine-tune them, or fully train them. We’ll fine-tune a model in
Chapter 8, Customizing LLMs and Their Output.

Generative AI is extensively used in generating 3D images, avatars, videos, graphs, and
illustrations for virtual or augmented reality, video games graphic design, logo creation,
image editing, or enhancement. The most popular model category here is for text-
conditioned image synthesis, specifically text-to-image generation. As mentioned, in this
book, we’ll focus on LLMs, since they have the broadest practical application, but we’ll
also have a look at image models, which sometimes can be quite useful.

In the next section, we’ll be reviewing state-of-the-art methods for text-conditioned
image generation. I’ll highlight the progress made in the field so far, but also discuss
existing challenges and potential future directions.

What are text-to-image models?

Text-to-image models are a powerful type of generative AI that creates realistic images
from textual descriptions. They have diverse use cases in creative industries and design
for generating advertisements, product prototypes, fashion images, and visual effects.
The main applications are:

Text-conditioned image generation: Creating original images from text prompts
like “a painting of a cat in a field of flowers.” This is used for art, design,
prototyping, and visual effects.
Image inpainting: Filling in missing or corrupted parts of an image based on the
surrounding context. This can restore damaged images (denoising, dehazing, and
deblurring) or edit out unwanted elements.
Image-to-image translation: Converting input images to a different style or
domain specified through text, like “make this photo look like a Monet painting.”
Image recognition: Large foundation models can be used to recognize images,
including classifying scenes, but also object detection, for example, detecting faces.

Models like Midjourney, DALL-E 2, and Stable Diffusion provide creative and realistic
images derived from textual input or other images. These models work by training deep
neural networks on large datasets of image-text pairs. The key technique used is

diffusion models, which start with random noise and gradually refine it into an image
through repeated denoising steps.

Popular models like Stable Diffusion and DALL-E 2 use a text encoder to map input text
into an embedding space. This text embedding is fed into a series of conditional
diffusion models, which denoise and refine a latent image in successive stages. The final
model output is a high-resolution image aligned with the textual description.

Two main classes of models are used: Generative Adversarial Networks (GANs) and
diffusion models. GAN models like StyleGAN or GANPaint Studio can produce highly
realistic images, but training is unstable and computationally expensive. They consist of
two networks that are pitted against each other in a game-like setting – the generator,
which generates new images from text embeddings and noise, and the discriminator,
which estimates the probability of the new data being real. As these two networks
compete, GANs get better at their task, generating realistic images and other types of
data.

The setup for training GANs is illustrated in this diagram (taken from A Survey on Text
Generation Using Generative Adversarial Networks, G de Rosa and J P. Papa, 2022;
https://arxiv.org/pdf/2212.11119.pdf):

Figure 1.7: GAN training

Diffusion models have become popular and promising for a wide range of generative
tasks, including text-to-image synthesis. These models offer advantages over previous
approaches, such as GANs, by reducing computation costs and sequential error
accumulation. Diffusion models operate through a process like diffusion in physics.

https://arxiv.org/pdf/2212.11119.pdf

They follow a forward diffusion process by adding noise to an image until it becomes
uncharacteristic and noisy. This process is analogous to an ink drop falling into a glass of
water and gradually diffusing.

The unique aspect of generative image models is the reverse diffusion process, where
the model attempts to recover the original image from a noisy, meaningless image. By
iteratively applying noise removal transformations, the model generates images of
increasing resolutions that align with the given text input. The final output is an image
that has been modified based on the text input. An example of this is the Imagen text-to-
image model (Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding by Google Research, May 2022), which incorporates frozen text
embeddings from LLMs, pre-trained on text-only corpora. A text encoder first maps the
input text to a sequence of embeddings. A cascade of conditional diffusion models takes
the text embeddings as input and generates images.

The denoising process is demonstrated in this plot (source: user Benlisquare via
Wikimedia Commons):

Figure 1.8: European-style castle in Japan, created using the Stable Diffusion V1-5 AI diffusion model

In Figure 1.8, only some steps within the 40-step generation process are shown. You can
see the image generation step by step, including the U-Net denoising process using the
Denoising Diffusion Implicit Model (DDIM) sampling method, which repeatedly
removes Gaussian noise, and then decodes the denoised output into pixel space.

With diffusion models, you can see a wide variety of outcomes using only minimal
changes to the initial setting of the model or – as in this case – numeric solvers and
samplers. Although they sometimes produce striking results, the instability and
inconsistency are a significant challenge to applying these models more broadly.

Stable Diffusion was developed by the CompVis group at LMU Munich (High-
Resolution Image Synthesis with Latent Diffusion Models by Blattmann and others,
2022). The Stable Diffusion model significantly cuts training costs and sampling time
compared to previous (pixel-based) diffusion models. The model can be run on
consumer hardware equipped with a modest GPU (for example, the GeForce 40 series).
By creating high-fidelity images from text on consumer GPUs, the Stable Diffusion
model democratizes access. Further, the model’s source code and even the weights have
been released under the CreativeML OpenRAIL-M license, which doesn’t impose
restrictions on reuse, distribution, commercialization, and adaptation.

Significantly, Stable Diffusion introduced operations in latent (lower-dimensional) space
representations, which capture the essential properties of an image, in order to improve
computational efficiency. A VAE provides latent space compression (called perceptual
compression in the paper), while a U-Net performs iterative denoising.

Stable Diffusion generates images from text prompts through several clear steps:

1. It starts by producing a random tensor (random image) in the latent space, which
serves as the noise for our initial image.

2. A noise predictor (U-Net) takes in both the latent noisy image and the provided text
prompt and predicts the noise.

3. The model then subtracts the latent noise from the latent image.
4. Steps 2 and 3 are repeated for a set number of sampling steps, for instance, 40

times, as shown in the plot.
5. Finally, the decoder component of the VAE transforms the latent image back into

pixel space, providing the final output image.

A VAE is a model that encodes data into a learned, smaller representation (encoding).
These representations can then be used to generate new data similar to that used for
training (decoding). This VAE is trained first.

A U-Net is a popular type of convolutional neural network (CNN) that
has a symmetric encoder-decoder structure. It is commonly used for
image segmentation tasks, but in the context of Stable Diffusion, it can
help to introduce and remove noise in the image. The U-Net takes a
noisy image (seed) as input and processes it through a series of
convolutional layers to extract features and learn semantic
representations.

These convolutional layers, typically organized in a contracting path,
reduce the spatial dimensions while increasing the number of channels.
Once the contracting path reaches the bottleneck of the U-Net, it then
expands through a symmetric expanding path. In the expanding path,
transposed convolutions (also known as upsampling or deconvolutions)
are applied to progressively upsample the spatial dimensions while
reducing the number of channels.

For training the image generation model in the latent space itself (latent diffusion
model), a loss function is used to evaluate the quality of the generated images. One
commonly used loss function is the Mean Squared Error (MSE) loss, which quantifies
the difference between the generated image and the target image. The model is
optimized to minimize this loss, encouraging it to generate images that closely resemble
the desired output.

This training was performed on the LAION-5B dataset, consisting of billions of image-
text pairs, derived from Common Crawl data, comprising billions of image-text pairs
from sources such as Pinterest, WordPress, Blogspot, Flickr, and DeviantArt.

The following images illustrate text-to-image generation from a text prompt with
diffusion (source: Ramesh and others, Hierarchical Text-Conditional Image Generation
with CLIP Latents, 2022; https://arxiv.org/abs/2204.06125):

https://arxiv.org/abs/2204.06125

Figure 1.9: Image generation from text prompts

Overall, image generation models such as Stable Diffusion and Midjourney process
textual prompts into generated images, leveraging the concept of forward and reverse
diffusion processes and operating in a lower-dimensional latent space for efficiency. But
what about the conditioning for the model in the text-to-image use case?

The conditioning process allows these models to be influenced by specific input textual
prompts or input types like depth maps or outlines for greater precision to create relevant
images. These embeddings are then processed by a text transformer and fed to the noise
predictor, steering it to produce an image that aligns with the text prompt.

It’s out of the scope of this book to provide a comprehensive survey of generative AI
models for all modalities. However, let’s get a bit of an overview of what models can do
for other domains.

What can AI do in other domains?

Generative AI models have demonstrated impressive capabilities across modalities
including sound, music, video, and 3D shapes. In the audio domain, models can
synthesize natural speech, generate original music compositions, and even mimic a
speaker’s voice and the patterns of rhythm and sound (prosody). Speech-to-text systems
can convert spoken language into text [Automatic Speech Recognition (ASR)]. For

video, AI systems can create photorealistic footage from text prompts and perform
sophisticated editing like object removal. 3D models learned to reconstruct scenes from
images and generate intricate objects from textual descriptions.

The following table summarizes some recent models in these domains:

Model Organization Year Domain Architecture Performance

3D-GQN DeepMind 2018 3D Deep,
iterative,
latent
variable
density
models

3D scene
generation
from 2D
images

Jukebox OpenAI 2020 Music VQ-VAE +
transformer

High-fidelity
music
generation in
different
styles

Whisper OpenAI 2022 Sound/speech Transformer Near human-
level speech
recognition

Imagen
Video

Google 2022 Video Frozen text
transformers
+ video
diffusion
models

High-
definition
video
generation
from text

Phenaki Google &
UCL

2022 Video Bidirectional
masked
transformer

Realistic
video
generation
from text

TecoGAN U. Munich 2022 Video Temporal
coherence

High-quality,
smooth video

module generation

DreamFusion Google 2022 3D NeRF +
Diffusion

High-fidelity
3D object
generation
from text

AudioLM Google 2023 Sound/speech Tokenizer +
transformer
LM +
detokenizer

High
linguistic
quality
speech
generation
maintaining
speaker’s
identity

AudioGen Meta AI 2023 Sound/speech Transformer
+ text
guidance

High-quality
conditional
and
unconditional
audio
generation

Universal
Speech
Model
(USM)

Google 2023 Sound/speech Encoder-
decoder
transformer

State-of-the-
art
multilingual
speech
recognition

Table 1.1: Models for audio, video, and 3D domains

Underlying many of these innovations are advances in deep generative architectures like
GANs, diffusion models, and transformers. Leading AI labs at Google, OpenAI, Meta,
and DeepMind are pushing the boundaries of what’s possible.

Summary

With the rise of computing power, deep neural networks, transformers, generative
adversarial networks, and VAEs model the complexity of real-world data much more
effectively than previous generations of models, pushing the boundaries of what’s
possible with AI algorithms. In this chapter, we explored the recent history of DL and AI
and generative models such as LLMs and GPTs, together with the theoretical ideas
underpinning them, especially the Transformer architecture. We also explained the basic
concepts of models for image generation, such as the Stable Diffusion model, and finally
discussed applications beyond text and images, such as sound and video.

The next chapter will explore the tooling of generative models, particularly LLMs, with
the LangChain framework, focusing on the fundamentals, the implementation, and the
use of this particular tool in exploiting and extending the capability of LLMs.

Questions

I think it’s a good habit to check that you’ve digested the material when reading a
technical book. For this purpose, I’ve created a few questions relating to the content of
this chapter. Let’s see if you can answer them:

1. What is a generative model?
2. Which applications exist for generative models?
3. What is an LLM and what does it do?
4. How can we get better performance from LLMs?
5. What are the conditions that make these models possible?
6. Which companies and organizations are the big players in developing LLMs?
7. What is a transformer and what does it consist of?
8. What does GPT stand for?
9. How does Stable Diffusion work?

10. What is a VAE?

If you struggle to answer these questions, please refer to the corresponding sections in
this chapter to ensure that you’ve understood the material.

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/lang

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Chapter_01.xhtml
https://oceanofpdf.com/

2

LangChain for LLM Apps

Large Language Models (LLMs) like GPT-4 have demonstrated immense
capabilities in generating human-like text. However, simply accessing
LLMs via APIs has limitations. Instead, combining them with other data
sources and tools can enable more powerful applications. In this chapter, we
will introduce LangChain as a way to overcome LLM limitations and build
innovative language-based applications. We aim to demonstrate the
potential of combining recent AI advancements with a robust framework
like LangChain.

We will start by outlining some challenges faced when using LLMs on their
own, like the lack of external knowledge, incorrect reasoning, and the
inability to take action. LangChain provides solutions to these issues
through different integrations and off-the-shelf components for specific
tasks. We will walk through examples of how developers can use
LangChain’s capabilities to create customized natural language processing
solutions, outlining the components and concepts involved.

The goal is to illustrate how LangChain enables building dynamic, data-
aware applications that go beyond what is possible by simply accessing
LLMs via API calls. Lastly, we will talk about important concepts related to
LangChain, such as chains, action plan generation, and memory, which are
important concepts to understand how LangChain works.

The main sections of this chapter are:

Going beyond stochastic parrots
What is LangChain?
Exploring key components of LangChain
How does LangChain work?
Comparing LangChain with other frameworks

Going beyond stochastic

parrots

LLMs have gained significant attention and popularity due to their ability to
generate human-like text and understand natural language, which makes
them useful in scenarios that revolve around content generation, text
classification, and summarization. However, their apparent fluency
obscures serious deficiencies that constrain real-world utility. The concept
of stochastic parrots helps to elucidate this fundamental issue.

Stochastic parrots refers to LLMs that can produce convincing language but
lack any true comprehension of the meaning behind words. Coined by
researchers Emily Bender, Timnit Gebru, Margaret Mitchell, and Angelina
McMillan-Major in their influential paper On the Dangers of Stochastic
Parrots (2021), the term critiques models that mindlessly mimic linguistic
patterns. Without being grounded in the real world, models can produce
responses that are inaccurate, irrelevant, unethical, or make little logical
sense.

Simply scaling up compute and data does not impart reasoning capabilities
or common sense. LLMs struggle with challenges like the compositionality
gap (Measuring and Narrowing the Compositionality Gap in Language

Models by Ofir Press and colleagues; 2023). This means LLMs cannot
connect inferences or adapt responses to new situations. Overcoming these
obstacles requires augmenting LLMs with techniques that add true
comprehension. Raw model scale alone cannot transform stochastic
parroting into beneficial systems. Innovations like prompting, chain-of-
thought reasoning, retrieval grounding, and others are needed to educate
models.

Let’s look at this argument in a bit more detail. If you wish to skip these
details, please move on to the next section. We’ll continue here by looking
at the limitations of LLMs, ways to overcome those limitations, and how
LangChain facilitates applications that systematically mitigate the
shortcomings and extend the functionality of LLMs.

What are the limitations of

LLMs?

As has been established, LLMs offer impressive capabilities but suffer from
limitations that hinder their effectiveness in certain scenarios.
Understanding these limitations is crucial when developing applications.
Some pain points associated with LLMs include:

Outdated knowledge: LLMs rely solely on their training data.
Without external integration, they cannot provide recent real-world
information.
Inability to take action: LLMs cannot perform interactive actions like
searches, calculations, or lookups. This severely limits functionality.
Lack of context: LLMs struggle to incorporate relevant context like
previous conversations and the supplementary details that are needed

for coherent and useful responses.
Hallucination risks: Insufficient knowledge on certain topics can lead
to the generation of incorrect or nonsensical content by LLMs if not
properly grounded.
Biases and discrimination: Depending on the data they were trained
on, LLMs can exhibit biases that can be religious, ideological, or
political in nature.
Lack of transparency: The behavior of large, complex models can be
opaque and difficult to interpret, posing challenges to alignment with
human values.
Lack of context: LLMs may struggle to understand and incorporate
context from previous prompts or conversations. They may not
remember previously mentioned details or may fail to provide
additional relevant information beyond the given prompt.

Let’s illustrate some of these limitations a bit more since they are very
important. As mentioned, LLMs face significant limitations in their lack of
real-time knowledge and inability to take actions themselves, which
restricts their effectiveness in many real-world contexts. For instance,
LLMs have no inherent connection to external information sources. They
are confined to the training data used to develop them, which inevitably
becomes increasingly outdated over time. An LLM would have zero
awareness of current events that occurred after its training data cut-off date.
Asking an LLM about breaking news or the latest societal developments
would leave it unable to construct responses without external grounding.

Additionally, LLMs cannot interact dynamically with the world around
them. They cannot check the weather, look up local data, or access
documents. With no ability to perform web searches, interface with APIs,

run calculations, or take any practical actions based on new prompts, LLMs
operate solely within the confines of pre-existing information. Even when
discussing topics contained in its training data, an LLM struggles to
incorporate real-time context and specifics without retrieving external
knowledge. For example, an LLM could fluently discuss macroeconomic
principles used in financial analysis, but it would fail to actually conduct
analysis by retrieving current performance data and computing relevant
statistics. Without dynamic lookup abilities, its financial discussion remains
generic and theoretical. Similarly, an LLM may eloquently describe a past
news event but then falter if asked for the latest developments on the same
story today.

Architecting solutions that combine LLMs with external data sources,
analytical programs, and tool integrations can help overcome these
limitations. But in isolation, LLMs lack connection to the real-world
context, which is often essential for useful applications. Their impressive
natural language abilities need appropriate grounding and actions to
produce substantive insights beyond eloquent but hollow text.

Let’s look at a few examples of problems with LLMs. The cut-off day issue
is illustrated here in the OpenAI ChatGPT interface asking about
LangChain:

Figure 2.1: ChatGPT – a lack of up-to-date information

In this case, the model was able to correctly catch the problem and give the
correct feedback – this is not always the case, though. If you access the
model through other endpoints or use other models, it might just make up
the information (hallucinate). Also, it might not have knowledge about
certain entities, or it may refer to different entities entirely. Asking the same
question in the OpenAI playground, I got this response:

Figure 2.2: OpenAI playground with GPT 3.5

In this case, we can see that the model talks about a different LangChain,
which is a decentralized blockchain-based translation platform. This is a
problem of relevance, which can be referred to as a hallucination. It can be
remedied by accessing external data, such as weather APIs, user
preferences, or relevant information from the web, and this is essential for
creating personalized and accurate language-driven applications.

LLMs struggle with certain tasks that involve logical reasoning or math
problems. As an example, even advanced LLMs perform poorly at high-
school level math and cannot perform simple math operations that they
haven’t seen before. Again, we can illustrate this with a simple
demonstration:

Figure 2.3: ChatGPT math solving

As you can see, the model comes up with the correct response for the first
question but fails with the second. Just in case you were wondering what
the true result is, if we use a calculator, we get this:

Figure 2.4: Multiplication with a calculator (BC)

The LLM hasn’t stored the result of the calculation or hasn’t encountered it
often enough in the training data for it to be reliably remembered as
encoded in its weights. Therefore, it fails to correctly come up with the
solution. An LLM is not a suitable tool for the job in this case.

Deploying chatbots and other applications using LLMs requires thoughtful
design and monitoring to address risks like bias and inappropriate content.
For instance, Microsoft’s Tay chatbot was taken offline shortly after launch
in 2016 due to offensive tweets resulting from toxic interactions.

As for reasoning, for example, an LLM may correctly identify a fruit’s
density and water’s density when asked about those topics independently,
but it would struggle to synthesize those facts to determine if the fruit will
float (this being a multi-hop question). The model fails to bridge its
disjointed knowledge.

Let’s see how we can address these challenges.

How can we mitigate LLM

limitations?

Mitigating these limitations includes techniques like:

Retrieval augmentation: This technique accesses knowledge bases to
supplement an LLM’s outdated training data, providing external
context and reducing hallucination risk.
Chaining: This technique integrates actions like searches and
calculations.
Prompt engineering: This involves the careful crafting of prompts by
providing critical context that guides appropriate responses.
Monitoring, filtering, and reviews: This involves ongoing and
effective oversight of emerging issues regarding the application’s input
and output to detect issues. Both manual reviews and automated filters
then correct potential problems with the output. This includes the
following:

a. Filters, like block lists, sensitivity classifiers, and banned word
filters, can automatically flag issues.

b. Constitutional principles monitor and filter unethical or
inappropriate content.

c. Human reviews provide insight into model behavior and output.
Memory: Retains conversation context by persisting conversation data
and context across interactions.
Fine-tuning: Training and tuning the LLM on more appropriate data
for the application domain and principles. This adapts the model’s
behavior for its specific purpose.

To re-emphasize what we previously mentioned, raw model scale alone
cannot impart compositional reasoning or other missing capabilities.
Explicit techniques like elicit prompting and chain-of-thought reasoning are
needed to overcome the compositionality gap. Approaches like self-ask
prompting mitigate these flaws by encouraging models to methodically
decompose problems.

Integrating such tools into training pipelines provides the otherwise lacking
faculties. Prompting supplies context, chaining enables inference steps, and
retrieval incorporates facts. Together, these transform stochastic parrots into
reasoning engines.

Thoughtful prompt engineering and fine-tuning prepare models for real-
world use. Ongoing monitoring then catches any emerging issues, both
through automation and human review. Filters act as a first line of defense.
Adopting constitutional AI principles also encourages building models
capable of behaving ethically. This comprehensive approach combines
preparation, vigilance, and inherently beneficial design.

Connecting LLMs to external data further reduces hallucination risks and
enhances responses with accurate, up-to-date information. However,
securely integrating sources like databases adds complexity. Frameworks
like LangChain simplify this while providing structure and oversight for
responsible LLM use. They allow composing prompted model queries and
data sources to surmount standalone LLM deficits. With diligent
augmentation, we can create AI systems previously not viable due to innate
model limitations. This brings us to our next topic of discussion.

What is an LLM app?

Combining LLMs with other tools into applications using specialized
tooling, LLM-powered applications have the potential to transform our
digital world. This is often done via a chain of one or multiple prompted
calls to LLMs but can also make use of other external services (such as
APIs or data sources) to achieve tasks.

Traditional software applications typically follow a multi-layer architecture:

Figure 2.5: A traditional software application

The client layer handles user interaction. The frontend layer handles
presentation and business logic. The backend layer processes logic, APIs,
computations, etc. Lastly, the database stores and retrieves data.

In contrast, an LLM app is an application that utilizes an LLM to
understand natural language prompts and generate responsive text outputs.
LLM apps typically have the following components:

A client layer to collect user input as text queries or decisions.
A prompt engineering layer to construct prompts that guide the LLM.
An LLM backend to analyze prompts and produce relevant text
responses.
An output parsing layer to interpret LLM responses for the application
interface.
Optional integration with external services via function APIs,
knowledge bases, and reasoning algorithms to augment the LLM’s
capabilities.

In the simplest possible cases, the frontend, parsing, and knowledge base
parts are sometimes not explicitly defined, leaving us with just the client,
the prompt, and the LLM:

Figure 2.6: A simple LLM application

LLM apps can integrate external services via:

Function APIs to access web tools and databases.
Advanced reasoning algorithms for complex logic chains.
Retrieval augmented generation via knowledge bases.

Retrieval augmented generation (RAG), which we will discuss in
Chapter 5, Building a Chatbot like ChatGPT, enhances the LLM with
external knowledge. These extensions expand the capabilities of LLM apps
beyond the LLM’s knowledge alone. For instance:

Function calling allows parameterized API requests.

SQL functions enable conversational database queries.
Reasoning algorithms like chain-of-thought facilitate multi-step logic.

This is illustrated here:

Figure 2.7: An advanced LLM application

As can be seen in the preceding figure, the client layer collects user text
queries and decisions. Prompt engineering constructs guide the LLM,
considering external knowledge or capability (or earlier interactions)
without changes to the model itself. The LLM backend dynamically
understands and responds to the prompts based on its training. Output
parsing interprets the LLM text for the frontend. A knowledge base can
enhance the LLM’s information, and optionally, like a database backend in
a traditional app, information can be written to it.

LLM applications are important for several reasons:

The LLM backend handles language in a nuanced, human-like way
without hardcoded rules.
Responses can be personalized and contextualized based on past
interactions.
Advanced reasoning algorithms enable complex, multi-step inference
chains.
Dynamic responses based on the LLM or on up-to-date information
retrieved in real time.

The key capability LLM apps use is the ability to understand nuanced
language in prompts and generate coherent, human-like text responses. This
facilitates more natural interactions and workflows compared to traditional
code.

The LLM provides human-like language capabilities without manual
coding. Therefore, there is no need to manually anticipate and code every
language scenario in advance. The integration of LLMs with external
services, knowledge, and reasoning algorithms eases the development of
innovative applications.

But responsible data practices are critical – PII should be kept off public
platforms and models should be fine-tuned in-house when needed. Both the
frontend and the output parser could include moderation and enforcing rules
about behavior, privacy, and security. Future research must address
concerns around potential misuse, biases, and limitations.

We will see a lot of examples of LLM apps throughout this book; here are a
few that we’ll encounter:

Chatbots and virtual assistants: These apps use LLMs like ChatGPT
to have natural conversations with users and assist with tasks like
scheduling, customer service, and information lookup.
Intelligent search engines: LLM apps can parse search queries
written in natural language and generate relevant results.
Automated content creation: Apps can leverage LLMs to generate
content like articles, emails, code, and more based on a text prompt.
Question answering: Users can ask an LLM app questions in plain
language and receive informative answers that are quickly sourced
from the model’s knowledge.

Sentiment analysis: You can analyze customer feedback, reviews, and
social posts using an LLM app to summarize sentiment and extract key
themes.
Text summarization: You can automatically generate concise
summaries of longer text documents and articles using an LLM
backend.
Data analysis: You can use LLMs for automated data analysis and
visualization to extract insights.
Code generation: You can set up software pair-programming
assistants that can help solve business problems.

The true power of LLMs lies not in LLMs being used in isolation but in
LLMs being combined with other sources of knowledge and computation.
The LangChain framework aims to enable precisely this kind of integration,
facilitating the development of context-aware, reasoning-based
applications. LangChain addresses pain points associated with LLMs and
provides an intuitive framework for creating customized NLP solutions.

What is LangChain?

Created in 2022 by Harrison Chase, LangChain is an open-source Python
framework for building LLM-powered applications. It provides developers
with modular, easy-to-use components for connecting language models
with external data sources and services. The project has attracted millions in
venture capital funding from the likes of Sequoia Capital and Benchmark,
who supplied funding to Apple, Cisco, Google, WeWork, Dropbox, and
many other successful companies.

LangChain simplifies the development of sophisticated LLM applications
by providing reusable components and pre-assembled chains. Its modular
architecture abstracts access to LLMs and external services into a unified
interface. Developers can combine these building blocks to carry out
complex workflows.

Building impactful LLM apps involves challenges like prompt engineering,
bias mitigation, productionizing, and integrating external data. LangChain
reduces this learning curve through its abstractions and composable
structure.

Beyond basic LLM API usage, LangChain facilitates advanced interactions
like conversational context and persistence through agents and memory.
This allows for chatbots, gathering external data, and more.

In particular, LangChain’s support for chains, agents, tools, and memory
allows developers to build applications that can interact with their
environment in a more sophisticated way and store and reuse information
over time. Its modular design makes it easy to build complex applications
that can be adapted to a variety of domains. Support for action plans and
strategies improves the performance and robustness of applications. The
support for memory and access to external information reduces
hallucinations, thus enhancing reliability.

The key benefits LangChain offers developers are:

Modular architecture for flexible and adaptable LLM integrations.
Chaining together multiple services beyond just LLMs.
Goal-driven agent interactions instead of isolated calls.
Memory and persistence for statefulness across executions.
Open-source access and community support.

As mentioned, LangChain is open source and written in Python, although
companion projects exist that are implemented in JavaScript or – more
precisely – TypeScript (LangChain.js), and the fledgling Langchain.rb
project for Ruby, which comes with a Ruby interpreter for code execution.
In this book, we focus on the Python flavor of the framework.

While resources like documentation, courses, and communities help
accelerate the learning process, developing expertise in applying LLMs
takes dedicated time and effort. For many developers, the learning curve
can be a blocking factor to impactfully leveraging LLMs.

There are active discussions on a Discord chat server, multiple blogs, and
regular meetups taking place in various cities, including San Francisco and
London. There’s even a chatbot, ChatLangChain, that can answer questions
about the LangChain documentation. It’s built using LangChain and
FastAPI and is available online through the documentation website!

LangChain comes with many extensions and a larger ecosystem that is
developing around it. As mentioned, it has an immense number of
integrations already, with many new ones being added every week. This
screenshot highlights a few of the integrations (source:
integrations.langchain.com):

https://integrations.langchain.com/

Figure 2.8: LangChain integrations as of September 2023

As for the broader ecosystem, LangSmith is a platform that complements
LangChain by providing robust debugging, testing, and monitoring
capabilities for LLM applications. For example, developers can quickly
debug new chains by viewing detailed execution traces. Alternative prompts
and LLMs can be evaluated against datasets to ensure quality and
consistency. Usage analytics empower data-driven decisions around
optimizations.

LlamaHub and LangChainHub provide open libraries of reusable elements
to build sophisticated LLM systems in a simplified manner. LlamaHub is a
library of data loaders, readers, and tools created by the LlamaIndex
community. It provides utilities to easily connect LLMs to diverse
knowledge sources. The loaders ingest data for retrieval, while tools enable
models to read/write to external data services. LlamaHub simplifies the
creation of customized data agents to unlock LLM capabilities.

LangChainHub is a central repository for sharing artifacts like prompts,
chains, and agents used in LangChain. Inspired by the Hugging Face Hub, it
aims to be a one-stop resource for discovering high-quality building blocks
to compose complex LLM apps. The initial launch focuses on a collection
of reusable prompts. Future plans involve adding support for chains, agents,
and other key LangChain components.

LangFlow and Flowise are UIs that allow chaining LangChain components
in an executable flowchart by dragging sidebar components onto the canvas
and connecting them together to create your pipeline. This is a quick way to
experiment and prototype pipelines and is illustrated in the following
screenshot of Flowise (source:
https://github.com/FlowiseAI/Flowise):

Figure 2.9: Flowise UI with an agent that uses an LLM, a calculator, and a search tool

https://github.com/FlowiseAI/Flowise

You can see an agent (discussed later in this chapter) that is connected to a
search interface (Serp API), an LLM, and a calculator. LangChain and
LangFlow can be deployed locally, for example, using the Chainlit library,
or on different platforms, including Google Cloud. The langchain-serve
library helps to deploy both LangChain and LangFlow on the Jina AI cloud
as LLM-apps-as-a-service with a single command.

While still relatively new, LangChain unlocks more advanced LLM
applications via its combination of components like memory, chaining, and
agents. It aims to simplify what can otherwise be complex LLM application
development. Hence, it is crucial at this point in the chapter that we shift
focus to the workings of LangChain and its components.

Exploring key components of

LangChain

Chains, agents, memory, and tools enable the creation of sophisticated LLM
applications that go beyond basic API calls to a single LLM. In the
following dedicated subsections on these key concepts, we’ll consider how
they enable the development of capable systems by combining language
models with external data and services.

We won’t dive into implementation patterns in this chapter; however, we
will discuss in more detail what some of these components are good for. By
the end, you should have the level of understanding that’s required to
architect systems with LangChain. Let’s start with chains!

What are chains?

Chains are a critical concept in LangChain for composing modular
components into reusable pipelines. For example, developers can put
together multiple LLM calls and other components in a sequence to create
complex applications for things like chatbot-like social interactions, data
extraction, and data analysis. In the most generic terms, a chain is a
sequence of calls to components, which can include other chains. The most
innocuous example of a chain is probably the PromptTemplate , which
passes a formatted response to a language model.

Prompt chaining is a technique that can be used to improve the
performance of LangChain applications, which involves chaining together
multiple prompts to autocomplete a more complex response. More complex
chains integrate models with tools like LLMMath , for math-related queries, or
SQLDatabaseChain , for querying databases. These are called utility chains,
because they combine language models with specific tools.

Chains can even enforce policies, like moderating toxic outputs or aligning
with ethical principles. LangChain implements chains to make sure the
content of the output is not toxic, does not otherwise violate OpenAI’s
moderation rules (OpenAIModerationChain), or that it conforms to ethical,
legal, or custom principles (ConstitutionalChain).

An LLMCheckerChain verifies statements to reduce inaccurate responses
using a technique called self-reflection. The LLMCheckerChain can prevent
hallucinations and reduce inaccurate responses by verifying the
assumptions underlying the provided statements and questions. In a paper
by researchers at Carnegie Mellon, Allen Institute, University of
Washington, NVIDIA, UC San Diego, and Google Research in May 2023
(SELF-REFINE: Iterative Refinement with Self-Feedback), this strategy has
been found to improve task performance by about 20% on average across a

benchmark including dialogue responses, math reasoning, and code
reasoning.

A few chains can make autonomous decisions. Like agents, router chains
can decide which tool to use based on their descriptions. A RouterChain can
dynamically select which retrieval system, such as prompts or indexes, to
use.

Chains deliver several key benefits:

Modularity: Logic is divided into reusable components.
Composability: Components can be sequenced flexibly.
Readability: Each step in a pipeline is clear.
Maintainability: Steps can be added, removed, and swapped.
Reusability: Common pipelines become configurable chains.
Tool integration: Easily incorporate LLMs, databases, APIs, etc.
Productivity: Quickly build prototypes of configurable chains.

Together, these benefits enable the encapsulation of complex workflows
into easy-to-understand and adaptable chained pipelines.

Typically, developing a LangChain chain involves breaking down a
workflow into logical steps, like data loading, processing, model querying,
and so on. Well-designed chains embrace single-responsibility components
being pipelined together. Steps should be stateless functions to maximize
reusability. Configurations should be made customizable. Robust error
handling with exceptions and errors is critical for reliability. Monitoring and
logging can be enabled with different mechanisms, including callbacks.

Let’s discuss agents next and how they make their decisions!

What are agents?

Agents are a key concept in LangChain for creating systems that interact
dynamically with users and environments over time. An agent is an
autonomous software entity that is capable of taking actions to accomplish
goals and tasks.

Chains and agents are similar concepts and it’s worth unpicking their
differences. The core idea in LangChain is the compositionality of LLMs
and other components to work together. Both chains and agents do that, but
in different ways. Both extend LLMs, but agents do so by orchestrating
chains while chains compose lower-level modules. While chains define
reusable logic by sequencing components, agents leverage chains to take
goal-driven actions. Agents combine and orchestrate chains. The agent
observes the environment, decides which chain to execute based on that
observation, takes the chain’s specified action, and repeats.

Agents decide which actions to take using LLMs as reasoning engines. The
LLM is prompted with available tools, user input, and previous steps. It
then selects the next action or final response.

Tools (discussed later in this chapter) are functions the agent calls to take
real-world actions. Providing the right tools and effectively describing them
is critical for agents to accomplish goals.

The agent executor runtime orchestrates the loop of querying the agent,
executing tool actions, and feeding observations back. This handles lower-
level complexities like error handling, logging, and parsing.

Agents provide several key benefits:

Goal-oriented execution: Agents can plan chains of logic targeting
specific goals.

Dynamic responses: Observing environment changes lets agents react
and adapt.
Statefulness: Agents can maintain memory and context across
interactions.
Robustness: Errors can be handled by catching exceptions and trying
alternate chains.
Composition: Agent logic combines reusable component chains.

Together, this enables agents to handle complex, multi-step workflows and
continuously interactive applications like chatbots.

In the section about the limitations of LLMs, we’ve seen that for
calculations, a simple calculator outperforms a model consisting of billions
of parameters. In this case, an agent can decide to pass the calculation to a
calculator or to a Python interpreter. We can see a simple app here, where
an agent is connected to both an OpenAI model and a Python function:

Figure 2.10: A simple LLM app with a Python function visualized in LangFlow

Based on the input, the agent can decide to run a Python function. Each
agent also decides which tool to use and when. We’ll look more at the
mechanics of how this works in Chapter 4, Building Capable Assistants.

A key limitation of agents and chains is their statelessness – each execution
occurs in isolation without retaining prior context. This is where the concept
of memory becomes critical. Memory in LangChain refers to persisting
information across chain executions to enable statefulness.

What is memory?

In LangChain, memory refers to the persisting state between executions of a
chain or agent. Robust memory approaches unlock key benefits for
developers building conversational and interactive applications. For
example, storing chat history context in memory improves the coherence
and relevance of LLM responses over time.

Rather than treating each user input as an isolated prompt, chains can pass
conversational memory to models on each call to provide consistency.
Agents can also persist facts, relationships, and deductions about the world
in memory. This knowledge remains available even as real-world conditions
change, keeping the agent contextually informed. Memory of objectives and
completed tasks allows agents to track progress on multi-step goals across
conversations. In addition, retaining information in memory reduces the
number of calls to LLMs for repetitive information. This lowers API usage
and costs, while still providing the agent or chain with the needed context.

LangChain provides a standard interface for memory, integrations with
storage options like databases, and design patterns for effectively
incorporating memory into chains and agents.

Several memory options exist – for example:

ConversationBufferMemory stores all messages in model history. This
increases latency and costs.
ConversationBufferWindowMemory retains only recent messages.
ConversationKGMemory summarizes exchanges as a knowledge graph
for integration into prompts.
EntityMemory backed by a database persists agent state and facts.

Moreover, LangChain integrates many database options for durable storage:

SQL options like Postgres and SQLite enable relational data modeling.
NoSQL choices like MongoDB and Cassandra facilitate scalable
unstructured data.
Redis provides an in-memory database for high-performance caching.
Managed cloud services like AWS DynamoDB remove infrastructure
burdens.

Beyond databases, purpose-built memory servers like Remembrall and
Motörhead offer optimized conversational context. The right memory
approach depends on factors like persistence needs, data relationships,
scale, and resources, but robustly retaining state is key for conversational
and interactive applications.

LangChain’s memory integrations, from short-term caching to long-term
databases, enable the building of stateful, context-aware agents.
Architecting effective memory patterns unlocks the next generation of
capable and reliable AI systems. LangChain comes with a long list of tools
that we can use in applications. A short section will not be able to do this
justice; however, I’ll attempt to give a brief overview.

What are tools?

Tools provide modular interfaces for agents to integrate external services
like databases and APIs. Toolkits group tools that share resources. Tools can
be combined with models to extend their capability. LangChain offers tools
like document loaders, indexes, and vector stores, which facilitate the
retrieval and storage of data for augmenting data retrieval in LLMs.

There are many tools available, and here are just a few examples:

Machine translator: A language model can use a machine translator
to better comprehend and process text in multiple languages. This tool
enables non-translation-dedicated language models to understand and
answer questions in different languages.
Calculator: Language models can utilize a simple calculator tool to
solve math problems. The calculator supports basic arithmetic
operations, allowing the model to accurately solve mathematical
queries in datasets specifically designed for math problem-solving.
Maps: By connecting with the Bing Map API or similar services,
language models can retrieve location information, assist with route
planning, provide driving distance calculations, and offer details about
nearby points of interest.
Weather: Weather APIs provide language models with real-time
weather information for cities worldwide. Models can answer queries
about current weather conditions or forecast the weather for specific
locations within varying time periods.
Stocks: Connecting with stock market APIs like Alpha Vantage allows
language models to query specific stock market information such as
opening and closing prices, highest and lowest prices, and more.

Slides: Language models equipped with slide-making tools can create
slides using high-level semantics provided by APIs such as the
python-pptx library or image retrieval from the internet based on
given topics. These tools facilitate tasks related to slide creation that
are required in various professional fields.
Table processing: APIs built with pandas DataFrames enable language
models to perform data analysis and visualization tasks on tables. By
connecting to these tools, models can provide users with a more
streamlined and natural experience for handling tabular data.
Knowledge graphs: Language models can query knowledge graphs
using APIs that mimic human querying processes, such as finding
candidate entities or relations, sending SPARQL queries, and retrieving
results. These tools assist in answering questions based on factual
knowledge stored in knowledge graphs.
Search engine: By utilizing search engine APIs like Bing Search,
language models can interact with search engines to extract
information and provide answers to real-time queries. These tools
enhance the model’s ability to gather information from the web and
deliver accurate responses.
Wikipedia: Language models equipped with Wikipedia search tools
can search for specific entities on Wikipedia pages, look up keywords
within a page, or disambiguate entities with similar names. These tools
facilitate question-answering tasks using content retrieved from
Wikipedia.
Online shopping: Connecting language models with online shopping
tools allows them to perform actions like searching for items, loading
detailed information about products, selecting item features, going

through shopping pages, and making purchase decisions based on
specific user instructions.

Additional tools include AI Painting, which allows language models to
generate images using AI image generation models; 3D Model
Construction, enabling language models to create 3D models using a
sophisticated 3D rendering engine; Chemical Properties, assisting in
resolving scientific inquiries about chemical properties using APIs like
PubChem; and database tools that facilitate natural language access to
database data for executing SQL queries and retrieving results.

These various tools provide language models with additional functionalities
and capabilities to perform tasks beyond text processing. By connecting
with these tools via APIs, language models can enhance their abilities in
areas such as translation, math problem-solving, location-based queries,
weather forecasting, stock market analysis, slide creation, table processing
and analysis, image generation, text-to-speech conversion, and many more
specialized tasks.

All these tools can give us advanced AI functionality, and there’s virtually
no limit to the tools available. We can easily build custom tools to extend
the capability of LLMs, as we’ll see in the next chapter. The use of different
tools expands the scope of applications for language models and enables
them to handle various real-world tasks more efficiently and effectively.

After discussing chains, agents, memory, and tools, let’s put this all together
to get a picture of how LangChain fits all of them together as moving parts.

How does LangChain work?

The LangChain framework simplifies building sophisticated LLM
applications by providing modular components that facilitate connecting
language models with other data and services. The framework organizes
capabilities into modules spanning from basic LLM interaction to complex
reasoning and persistence.

These components can be combined into pipelines also called chains that
sequence the following actions:

Loading documents
Embedding for retrieval
Querying LLMs
Parsing outputs
Writing memory

Chains match modules to application goals, while agents leverage chains
for goal-directed interactions with users. They repeatedly execute actions
based on observations, plan optimal logic chains, and persist memory
across conversations.

The modules, ranging from simple to advanced, are:

LLMs and chat models: Provide interfaces to connect and query
language models like GPT-3. Support async, streaming, and batch
requests.
Document loaders: Ingest data from sources into documents with text
and metadata. Enable loading files, webpages, videos, etc.
Document transformers: Manipulate documents via splitting,
combining, filtering, translating, etc. Help adapt data for models.
Text embeddings: Create vector representations of text for semantic
search. Different methods for embedding documents vs. queries.

Vector stores: Store embedded document vectors for efficient
similarity search and retrieval.
Retrievers: General interface to return documents based on a query.
Can leverage vector stores.
Tools: Interfaces that agents use to interact with external systems.

Agents: Goal-driven systems that use LLMs to plan actions based on
environment observations.
Toolkits: Initialize groups of tools that share resources like databases.
Memory: Persist information across conversations and workflows by
reading/writing session data.
Callbacks: Hook into pipeline stages for logging, monitoring,
streaming, and others. Callbacks enable monitoring chains.

Together, the preceding capabilities facilitate the building of robust,
efficient, and capable LLM applications with LangChain. Each of them has
its own complexity and importance, so it’s important to explain a bit more.

LangChain offers interfaces to connect with and query LLMs like GPT-3
and chat models. These interfaces support asynchronous requests, streaming
responses, and batch queries. This provides a flexible API for integrating
different language models.

Although LangChain doesn’t supply models itself, it supports integration
through LLM wrappers with various language model providers, enabling
the app to interact with chat models as well as text embedding model
providers. Supported providers include OpenAI, HuggingFace, Azure, and
Anthropic. Providing a standardized interface means being able to
effortlessly swap out models to save money and energy or get better
performance. We’ll go into some of these options in Chapter 3, Getting
Started with LangChain.

A core building block of LangChain is the prompt class, which allows users
to interact with LLMs by providing concise instructions or examples.
Prompt engineering helps optimize prompts for optimal model
performance. Templates give flexibility in terms of input and the available
collection of prompts is battle-tested in a range of applications. We’ll
discuss prompts starting in Chapter 3, Getting Started with LangChain, and
prompt engineering is the topic of Chapter 8, Customizing LLMs and Their
Output.

Document loaders allow ingesting data from various sources into
documents containing text and metadata. This data can then be manipulated
via document transformers – splitting, combining, filtering, translating, etc.
These tools adapt external data for use in LLMs.

Data loaders include modules for storing data and utilities for interacting
with external systems, like web searches or databases, and most importantly
data retrieval. Examples are Microsoft Word documents (.docx),
HyperText Markup Language (HTML), and other common formats such
as PDF, text files, JSON, and CSV. Other tools will send emails to
prospective customers, post funny puns for your followers, or send Slack
messages to your coworkers. We’ll look at these in Chapter 5, Building a
Chatbot like ChatGPT.

Text embedding models create vector representations of text that capture
semantic meaning. This enables semantic search by finding text with the
most similar vector representations. Vector stores build on this by indexing
embedded document vectors for efficient similarity-based retrieval.

Vector stores come in when working with large documents, where the
document needs to be chunked up in order to be passed to the LLM. These
parts of the document would be stored as embeddings, which means that

they are vector representations of the information. All these tools enhance
the LLMs’ knowledge and improve their performance in applications like
question answering and summarization.

There are numerous integrations for vector storage. These include Alibaba
Cloud OpenSearch, AnalyticDB for PostgreSQL, Meta AI’s Annoy library
for Approximate Nearest Neighbor (ANN) search, Cassandra, Chroma,
Elasticsearch, Facebook AI Similarity Search (Faiss), MongoDB Atlas
Vector Search, PGVector as a vector similarity search for Postgres,
Pinecone, scikit-learn (SKLearnVectorStore for k-nearest neighbor search),
and many more. We’ll explore these in Chapter 5, Building a Chatbot like
ChatGPT.

While the next chapters will dig into the details of some
usage patterns and use cases of LangChain components, the
following resources provide invaluable information on
LangChain’s components and how they can be assembled
into pipelines.

For full details on the dozens of available modules, refer to
the comprehensive LangChain API reference:
https://api.python.langchain.com/. There are
also hundreds of code examples demonstrating real-world
use cases:
https://python.langchain.com/docs/use_ca

ses/.

There are a few other frameworks besides LangChain; however, we’ll see
that LangChain is one of the most prominent and feature rich of them.

https://api.python.langchain.com/
https://python.langchain.com/docs/use_cases/

Comparing LangChain with

other frameworks

LLM application frameworks have been developed to provide specialized
tooling that can harness the power of LLMs effectively to solve complex
problems. A few libraries have emerged that meet the requirements of
effectively combining generative AI models with other tools to build LLM
applications.

There are several open-source frameworks for building dynamic LLM
applications. They all offer value in developing cutting-edge LLM
applications. This graph shows their popularity over time (data source:
GitHub star history, https://star-history.com/):

Figure 2.11: Comparison of popularity between different frameworks in Python

We can see the number of stars on GitHub over time for each project.
Haystack is the oldest of the compared frameworks, having started in early
2020 (as per the earliest GitHub commits). It is also the least popular in
terms of stars on GitHub. LangChain, LlamaIndex (previously called
GPTIndex), and SuperAGI were started in late 2022 or early 2023, and they
have all fallen short in popularity in a noticeably brief time compared to

https://star-history.com/

LangChain, which has been growing impressively. AutoGen is a project
recently released by Microsoft that has already garnered some interest. In
this book, we’ll see a lot of the functionality of LangChain and explore its
features, which are the reason its popularity is exploding right now.

LlamaIndex focuses on advanced retrieval rather than on the broader
aspects of LLM apps. Similarly, Haystack focuses on creating large-scale
search systems with components designed specifically for scalable
information retrieval using retrievers, readers, and other data handlers
combined with semantic indexing via pre-trained models.

LangChain excels at chaining LLMs together using agents to delegate
actions to models. Its use cases emphasize prompt optimization and
context-aware information retrieval/generation; however, with its Pythonic
highly modular interface and its huge collection of tools, it is the number-
one tool to implement complex business logic.

SuperAGI has similar features to LangChain. It even comes with a
marketplace, a repository for tools and agents. However, it’s not as
extensive and well supported as LangChain.

AutoGen simplifies the building, orchestrating, and optimizing of complex
workflows powered by LLMs. Its key innovation is enabling customizable
conversational agents that automate coordination between different LLMs,
humans, and tools via automated chat. AutoGen streamlines agent definition
and interaction to automatically compose optimal LLM-based workflows.

I haven’t included AutoGPT (and similar tools like AutoLlama), a recursive
application that breaks down tasks, because its reasoning capability, based
on human and LLM feedback, is very limited compared to LangChain. As a
consequence, it’s often caught in logic loops and regularly repeats steps.

I’ve also omitted a few libraries that concentrate on prompt engineering, for
example, Promptify.

There are other LLM app frameworks in languages such as Rust,
JavaScript, Ruby, and Java. For example, Dust, written in Rust, focuses on
the design of LLM apps and their deployment.

Frameworks like LangChain aim to lower barriers by providing guardrails,
conventions, and pre-built modules, but foundational knowledge remains
important for avoiding pitfalls and maximizing value from LLMs. Investing
in education pays dividends when delivering capable, responsible
applications.

Summary

LLMs produce convincing language but have significant limitations in
terms of reasoning, knowledge, and access to tools. The LangChain
framework simplifies the building of sophisticated applications powered by
LLMs that can mitigate these shortcomings. It provides developers with
modular, reusable building blocks like chains for composing pipelines and
agents for goal-oriented interactions. These building blocks fit together as
LLM apps that come with extended capabilities.

As we saw in this chapter, chains allow sequencing calls to LLMs,
databases, APIs, and more to accomplish multi-step workflows. Agents
leverage chains to take actions based on observations for managing
dynamic applications. Memory persists information across executions to
maintain state. Together, these concepts enable developers to overcome the
limitations of individual LLMs by integrating external data, actions, and

context. In other words, LangChain reduces complex orchestration into
customizable building blocks.

In the next chapters, we’ll build on these LangChain fundamentals to create
capable, real-world applications. We’ll implement conversational agents
combining LLMs with knowledge bases and advanced reasoning
algorithms. By leveraging LangChain’s capabilities, developers can unlock
the full potential of LLMs to power the next generation of AI software. In
the next chapter, we’ll implement our first apps with Langchain!

Questions

Please see if you can come up with answers to these questions. I’d
recommend you go back to the corresponding sections of this chapter if you
are unsure about any of them:

1. What are the limitations of LLMs?
2. What are stochastic parrots?
3. What are LLM applications?
4. What is LangChain and why should you use it?
5. What are LangChain’s key features?
6. What is a chain in LangChain?
7. What is an agent?
8. What is memory and why do we need it?
9. What kind of tools are available in LangChain?

10. How does LangChain work?

Join our community on

Discord

Join our community’s Discord space for discussions with the authors and
other readers:

https://packt.link/lang

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Chapter_02.xhtml
https://oceanofpdf.com/

3

Getting Started with

LangChain

In this book, we’ll write a lot of code and test many different integrations
and tools. Therefore, in this chapter, we’ll give basic setup instructions for
all the libraries needed with the most common dependency management
tools such as Docker, Conda, pip, and Poetry. This will ensure that you can
run all the practical examples in this book.

Next, we’ll go through model integrations that we can use such as OpenAI’s
ChatGPT, models on Hugging Face, Jina AI, and others. Further, we’ll
introduce, set up, and work with a few providers in turn. For each of them,
we will show how to get an API key token.

In the end, as a practical example, we’ll go through an example of a real-
world application, an LLM app that could help customer service agents, one
of the main areas where LLMs could prove to be game-changing. This will
give us a bit more context around using LangChain, and we can introduce
tips and tricks for using it effectively.

The main sections are as follows:

How to set up the dependencies for this book
Model integrations
Building an application for customer service

We’ll start the chapter by setting up the environment for the book on our
computer.

How to set up the

dependencies for this book

We’ll assume at least a basic familiarity with Python, Jupyter, and
environments in this book, but let’s quickly walk through this together. You
can safely skip this section if you are confident about your setup or if you
plan to install libraries separately for each chapter or application.

Please make sure you have Python version 3.10 or higher installed. You can
install it from python.org or your platform’s package manager. If you
use Docker, Conda, or Poetry, an appropriate Python version should be
installed automatically as part of the instructions. You should also install
Jupyter Notebook or JupyterLab to run the example notebooks interactively.

Environment management tools like Docker, Conda, Pip, and Poetry help
create reproducible Python environments for projects. They install
dependencies and isolate projects. This table gives an overview of these
options for managing dependencies:

Tool Pros Cons

pip Default Python package
manager

Simple commands to
install packages

Can’t install non-Python system
dependencies

No built-in virtual environment
management (see venv or other
tools)

https://python.org/

requirements.txt for
tracking dependencies

Limited dependency resolution

Poetry Intuitive interface

Robust dependency
resolution

Built-in virtual
environment management

Lock files and version
control

Less common than Pip or Conda

Limited non-Python dependency
management

Conda Manages Python and non-
Python dependencies

Handles complex
dependency trees

Supports multiple Python
versions

Built-in virtual
environment management

Slower than native package
managers

Large disk usage

Docker Provides fully isolated and
reproducible environments

Easily shared and
distributed

Guaranteed consistency
across systems

Additional platform knowledge
required

Larger disk usage

Slower startup times

Table 3.1: Comparison of tools for managing dependencies

For developers, Docker, which provides isolation via containers, is a good
option. The downside is that it uses a lot of disk space and is more complex
than the other options. For data scientists, I’d recommend Conda or Poetry.

Conda handles intricate dependencies efficiently, although it can be
excruciatingly slow in large environments. Poetry resolves dependencies
well and managed environments; however, it doesn’t capture system
dependencies.

All tools allow sharing and replicating dependencies from configuration
files. You can find a set of instructions and the corresponding configuration
files in the book’s repository at
https://github.com/benman1/generative_ai_with_lang

chain.

This includes these files:

requirements.txt for pip

pyproject.toml for Poetry
langchain_ai.yaml for Conda

Dockerfile for Docker

Depending on whether system dependencies are managed, they can require
additional tweaks with more setup, as in the case with pip and poetry. My
preference is Conda because it strikes the right balance for me of
complexity versus isolation.

As mentioned, we won’t spend much time on installation but rather breeze
through each of the different tools in turn. For all instructions, please make
sure you have the book’s repository downloaded (using the GitHub user
interface) or cloned on your computer, and you’ve changed into the
project’s root directory.

https://github.com/benman1/generative_ai_with_langchain

If you encounter issues during the installation process, consult the
respective documentation or raise an issue on the GitHub repository of this
book. The different installations have been tested at the time of the release
of this book; however, things can change, and we will update the GitHub
README online to include workarounds for potential problems that could
arise.

For each tool, the key steps are installing the tool, using the configuration
file from the repository, and activating the environment. This sets up a
reproducible environment to run all the examples in the book (with very
few exceptions, which will be noted).

Let’s go from the simplest to the most complex. We’ll start with pip!

pip

pip is the default Python package manager. To use Pip:

1. If it’s not already included in your Python distribution, install pip
following the instructions here: https://pip.pypa.io/.

2. Use a virtual environment for isolation (for example, venv).

3. Install the dependencies from requirements.txt :

pip install -r requirements.txt

Poetry

Poetry is relatively new, but is popular with Python developers and data
scientists because of its convenience. It manages dependencies and virtual
environments. To use Poetry:

https://pip.pypa.io/

1. Install poetry by following the instructions at https://python-
poetry.org/.

2. Run poetry install to install the dependencies.

Conda

Conda manages Python environments and dependencies. To use Conda:

1. Install Miniconda or Anaconda following the instructions from this
link: https://docs.continuum.io/anaconda/install/.

2. Create the environment from langchain_ai.yml :

conda env create --file langchain_ai.yaml

3. Activate the environment:

conda activate langchain_ai

Docker

Docker provides isolated, reproducible environments using containers. To
use Docker:

1. Install Docker Engine; follow the installation instructions here:
https://docs.docker.com/get-docker/.

2. Build the Docker image from the Dockerfile in this repository:

docker build -t langchain_ai

3. Run the Docker container interactively:

https://python-poetry.org/
https://docs.continuum.io/anaconda/install/
https://docs.docker.com/get-docker/

docker run -it langchain_ai

Let’s move on and see some of the models that you can use with
LangChain!

There are many cloud providers of models, where you can use the model
through an interface; other sources allow you to download a model to your
computer.

With the help of LangChain, we can interact with all of these – for example,
through Application Programming Interface (APIs), or we can call
models that we have downloaded on our computer. Let’s start with models
accessed through APIs with cloud providers.

Exploring API model

integrations

Before properly starting with generative AI, we need to set up access to
models such as LLMs or text-to-image models so we can integrate them
into our applications. As discussed in Chapter 1, What Is Generative AI?,
there are various LLMs by tech giants, like GPT-4 by OpenAI, BERT and
PaLM-2 by Google, LLaMA by Meta, and many more.

For LLMs, OpenAI, Hugging Face, Cohere, Anthropic, Azure, Google
Cloud Platform’s Vertex AI (PaLM-2), and Jina AI are among the many
providers supported in LangChain; however, this list is growing all the
time. You can check out the full list of supported integrations for LLMs at
https://integrations.langchain.com/llms.

Here’s a screenshot of this page as of the time of writing (October 2023),
which includes both cloud providers and interfaces for local models:

https://integrations.langchain.com/llms

Figure 3.1: LLM integrations in LangChain

LangChain implements three different interfaces – we can use chat models,
LLMs, and embedding models. Chat models and LLMs are similar in that
they both process text input and produce text output. However, there are
some differences in the types of input and output they handle. Chat models
are specifically designed to handle a list of chat messages as input and
generate a chat message as output. They are commonly used in chatbot
applications where conversations are exchanged. You can find chat models
at
https://python.langchain.com/docs/integrations/cha

t.

Finally, text embedding models are used to convert text inputs into
numerical representations called embeddings. We’ll focus on text
generation in this chapter, and discuss embeddings, vector databases, and
neural search in Chapter 5, Building a Chatbot Like ChatGPT. Suffice it to
say here that these embeddings are a way to capture and extract information

https://python.langchain.com/docs/integrations/chat

from the input text. They are widely used in natural language processing
tasks like sentiment analysis, text classification, and information retrieval.
Embedding models are listed at
https://python.langchain.com/docs/integrations/tex

t_embedding.

As for image models, the big developers include OpenAI (DALL-E),
Midjourney, Inc. (Midjourney), and Stability AI (Stable Diffusion).
LangChain currently doesn’t have out-of-the-box handling of models that
are not for text; however, its documentation describe how to work with
Replicate, which also provides an interface to Stable Diffusion models.

For each of these providers, to make calls against their API, you’ll first need
to create an account and obtain an API key. This is free of charge for all
providers and, with some of them, you don’t even have to give them your
credit card details.

To set an API key in an environment, in Python, we can execute the
following lines:

import os
os.environ["OPENAI_API_KEY"] = "<your token>"

Here, OPENAI_API_KEY is the environment key that is appropriate for
OpenAI. Setting the keys in your environment has the advantage of not
needing to include them as parameters in your code every time you use a
model or service integration.

You can also expose these variables in your system environment from your
terminal. In Linux and macOS, you can set a system environment variable
from the terminal using the export command:

https://python.langchain.com/docs/integrations/text_embedding

export OPENAI_API_KEY=<your token>

To permanently set the environment variable in Linux or macOS, you
would need to add the preceding line to the ~/.bashrc or ~/.bash_profile
file, respectively, and then reload the shell using the command source
~/.bashrc or source ~/.bash_profile .

In Windows, you can set a system environment variable from the command
prompt using the set command:

set OPENAI_API_KEY=<your token>

To permanently set the environment variable in Windows, you can add the
preceding line to a batch script.

My personal choice is to create a config.py file, where all the keys are
stored. I then import a function from this module that will load all these
keys into the environment. If you look for this file in the Github repository,
you’ll notice that it is missing. This is on purpose (in fact, I’ve disabled the
tracking of this file in Git) since I don’t want to share my keys with other
people for security reasons (and because I don’t want to pay for anyone
else’s usage).

My config.py looks like this:

import os
OPENAI_API_KEY = "... "
I'm omitting all other keys
def set_environment():
 variable_dict = globals().items()
 for key, value in variable_dict:

 if "API" in key or "ID" in key:
 os.environ[key] = value

You can set all your keys in the config.py file. This function,
set_environment() , loads all the keys into the environment as mentioned.
Anytime you want to run an application, you import the function and run it
like so:

from config import set_environment
set_environment()

Now, let’s go through a few prominent model providers in turn. We’ll give
an example of usage for each of them. Let’s start with a fake LLM that we
can use for testing purposes. This will help to illustrate the general idea of
calling language models in LangChain.

Fake LLM

The fake LLM allows you to simulate LLM responses during testing
without needing actual API calls. This is useful for rapid prototyping and
unit testing agents. Using the FakeLLM avoids hitting rate limits during
testing. It also allows you to mock various responses to validate that your
agent handles them properly. Overall, it enables fast agent iteration without
needing a real LLM.

For example, you could initialize a FakeLLM that returns " Hello" as
follows:

from langchain.llms import FakeLLM
fake_llm = FakeLLM(responses=["Hello"])

You can execute this example in either Python directly or in a notebook.

The fake LLM is only for testing purposes. The LangChain documentation
has an example of tool use with LLMs. This is a bit more complex than the
previous example but gives a hint of the capabilities we have at our
fingertips:

from langchain.llms.fake import FakeListLLM
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
tools = load_tools(["python_repl"])
responses = ["Action: Python_REPL\nAction Input: print(2 + 2)",
llm = FakeListLLM(responses=responses)
agent = initialize_agent(
 tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, ve
)
agent.run("whats 2 + 2")

We set up an agent that makes decisions based on the React strategy that we
explained in Chapter 2, LangChain for LLM Apps
(ZERO_SHOT_REACT_DESCRIPTION). We run the agent with a text: the question
what's 2 + 2 .

As you can see, we connect a tool, a Python Read-Eval-Print Loop
(REPL), that will be called depending on the output of the LLM.
FakeListLLM will give two responses ("Action: Python_REPL\nAction
Input: print(2 + 2)" and "Final Answer: 4") that won’t change based on
the input.

We can also observe how the fake LLM output leads to a call to the Python
interpreter, which returns 4 . Please note that the action must match the
name attribute of the tool, PythonREPLTool , which starts like this:

class PythonREPLTool(BaseTool):
 """A tool for running python code in a REPL."""
 name = "Python_REPL"
 description = (
 "A Python shell. Use this to execute python commands. "
 "Input should be a valid python command. "
 "If you want to see the output of a value, you should p
 "with `print(...)`."
)

As you can see in the preceding code block, the names and descriptions of
the tools are passed to the LLM, which then decides an action based on the
information provided. The action can be executing a tool or planning.

The output of the Python interpreter is passed to the fake LLM, which
ignores the observation and returns 4 . Obviously, if we change the second
response to "Final Answer: 5" , the output of the agent wouldn’t
correspond to the question.

In the next sections, we’ll make our example more meaningful by using an
actual LLM rather than a fake one. One of the first providers anyone will
think of is OpenAI.

OpenAI

As explained in Chapter 1, What Is Generative AI?, OpenAI is an American
AI research laboratory that is the current market leader in generative AI
models, especially LLMs. They offer a range of models with various levels
of power suitable for different tasks. We’ll see, in this chapter, how to
interact with OpenAI models with the LangChain and the OpenAI Python
client libraries. OpenAI also offers an Embedding class for text embedding
models.

We will use OpenAI for our applications but will also try LLMs from other
organizations. When you send a prompt to an LLM API, it processes the
prompt word by word, breaking down (tokenizing) the text into individual
tokens. The number of tokens directly correlates with the amount of text.

When using commercial LLMs like GPT-3 and GPT-4 via APIs, each token
has an associated cost based on factors like the LLM model and API pricing
tiers. Token usage refers to how many tokens from the model’s quota have
been consumed to generate a response. Strategies like using smaller models,
summarizing outputs, and preprocessing inputs help reduce the tokens
required to get useful results. Being aware of token usage is key for
optimizing productivity within budget constraints when leveraging
commercial LLMs.

We need to obtain an OpenAI API key first. To create an API key, follow
these steps:

1. You need to create a login at
https://platform.openai.com/.

2. Set up your billing information.
3. You can see the API keys under Personal | View API Keys.
4. Click on Create new secret key and give it a name.

Here’s how this should look on the OpenAI platform:

https://platform.openai.com/

Figure 3.2: OpenAI API platform – Create new secret key

After clicking Create secret key, you should see the message API key
generated. You need to copy the key to your clipboard and keep it. We can
set the key as an environment variable (OPENAI_API_KEY) or pass it as a
parameter every time you construct a class for OpenAI calls.

We can use the OpenAI language model class to set up an LLM to interact
with. Let’s create an agent that calculates using this model – I am omitting
the imports from the previous example:

from langchain.llms import OpenAI
llm = OpenAI(temperature=0., model="text-davinci-003")
agent = initialize_agent(
 tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, ve
)
agent.run("whats 4 + 4")

We should be seeing this output:

> Entering new chain...
 I need to add two numbers
Action: Python_REPL
Action Input: print(4 + 4)

Observation: 8
Thought: I now know the final answer
Final Answer: 4 + 4 = 8
> Finished chain.
'4 + 4 = 8'

The agent comes up with the right solution. It’s a simple problem, but I still
find it fascinating to be able to put my question in natural language. During
the course of this book, we’ll try to come up with solutions to more
complex problems. But for now, let’s move on to the next provider and
more examples!

Hugging Face

Hugging Face is a very prominent player in the NLP space and has
considerable traction in open-source and hosting solutions. The company is
an American company that develops tools for building machine learning
applications. Its employees develop and maintain the Transformers Python
library, which is used for NLP tasks, includes implementations of state-of-
the-art and popular models like Mistral 7B, BERT, and GPT-2, and is
compatible with PyTorch, TensorFlow, and JAX.

Hugging Face also provides the Hugging Face Hub, a platform for hosting
Git-based code repositories, machine learning models, datasets, and web
applications, which provides over 120k models, 20k datasets, and 50k demo
apps (spaces) for machine learning. It is an online platform where people
can collaborate and facilitate machine learning development.

These tools allow users to load and use models, embeddings, and datasets
from Hugging Face. The HuggingFaceHub integration, for example, provides
access to different models for tasks like text generation and text

classification. The HuggingFaceEmbeddings integration allows users to work
with sentence-transformer models.

Hugging Face offer various other libraries within their ecosystem, including
Datasets for dataset processing, Evaluate for model evaluation, Simulate
for simulation, and Gradio for machine learning demos.

In addition to their products, Hugging Face has been involved in initiatives
such as the BigScience Research Workshop, where they released an open
LLM called BLOOM with 176 billion parameters. They have received
significant funding, including a $40 million Series B round and a recent
Series C funding round led by Coatue and Sequoia at a $2 billion valuation.
Hugging Face has also formed partnerships with companies like Graphcore
and Amazon Web Services to optimize their offerings and make them
available to a broader customer base.

To use Hugging Face as a provider for your models, you can create an
account and API keys at
https://huggingface.co/settings/profile. Additionally,
you can make the token available in your environment as
HUGGINGFACEHUB_API_TOKEN .

Let’s see an example, where we use an open-source model developed by
Google, the Flan-T5-XXL model:

from langchain.llms import HuggingFaceHub
llm = HuggingFaceHub(
 model_kwargs={"temperature": 0.5, "max_length": 64},
 repo_id="google/flan-t5-xxl"
)
prompt = "In which country is Tokyo?"

https://huggingface.co/settings/profile

completion = llm(prompt)
print(completion)

We get the response "japan" .

The LLM takes a text input, a question in this case, and returns a
completion. The model has a lot of knowledge and can come up with
answers to knowledge questions.

Google Cloud Platform

There are many models and functions available through Google Cloud
Platform (GCP) and Vertex AI, GCP’s machine learning platform. GCP
provides access to LLMs like LaMDA, T5, and PaLM. Google has also
updated the Google Cloud Natural Language (NL) API with a new LLM-
based model for Content Classification. This updated version offers an
expansive pre-trained classification taxonomy to help with ad targeting and
content-based filtering. The NL API’s improved v2 classification model is
enhanced with over 1,000 labels and supports 11 languages with improved
accuracy (it is unclear, however, which model is used under the hood).

For models with GCP, you need to have the gcloud command-line
interface (CLI) installed. You can find the instructions here:
https://cloud.google.com/sdk/docs/install.

You can then authenticate and print a key token with this command from
the terminal:

gcloud auth application-default login

https://cloud.google.com/sdk/docs/install

You also need to enable Vertex AI for your project. To enable Vertex AI,
install the Google Vertex AI SDK with the pip install google-cloud-
aiplatform command. If you’ve followed the instructions on GitHub as
indicated in the previous section, you should already have this installed.

Then we have to set up the Google Cloud project ID. You have different
options for this:

Using gcloud config set project my-project
Passing a constructor argument when initializing the LLM
Using aiplatform.init()

Setting a GCP environment variable

I found all these options work fine. You can find more details about these
options in the Vertex documentation. The GCP environment variable works
well with the config.py file that I mentioned earlier. I found the gcloud
command very convenient though, so I went with this. Please make sure
you set the project ID before you move on.

If you haven’t enabled it, you should get a helpful error message pointing
you to the right website, where you click Enable.

Let’s run a model!

from langchain.llms import VertexAI
from langchain import PromptTemplate, LLMChain
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["qu
llm = VertexAI()
llm_chain = LLMChain(prompt=prompt, llm=llm, verbose=True)
question = "What NFL team won the Super Bowl in the year Justin
llm_chain.run(question)

We should see this response:

[1m> Entering new chain...[0m
Prompt after formatting:
[[Question: What NFL team won the Super Bowl in the year Justin
Answer: Let's think step by step.[0m
[1m> Finished chain.[0m
Justin Beiber was born on March 1, 1994. The Super Bowl in 1994

I’ve set verbose to True to see the model’s reasoning process. It’s quite
impressive that it produces the right response even given a misspelling of
the name. The step-by-step prompt instruction is key to the correct answer.

Vertex AI offers a range of models tailored for tasks like following
instructions, conversation, and code generation/assistance:

text-bison is fine-tuned to follow natural language instructions, with a
max input of 8,192 tokens and an output of 1,024.
chat-bison is optimized for multi-turn conversation with a max input
of 4,096 tokens, an output of 1,024 tokens, and up to 2,500 turns.
code-bison generates code from natural language descriptions, with a
max input of 4,096 tokens and an output of 2,048 tokens.
codechat-bison is a chatbot that is fine-tuned to help with code-related
questions. It has an input limit of 4,096 tokens and an output limit of
2,048 tokens.
code-gecko suggests code completions. It has a max input length of
2,048 tokens and an output of 64 tokens.

These models also have different input/output limits and training data and
are often updated. For more detailed and up-to-date information about
models, including when models have been updated, you can check out the

documentation at https://cloud.google.com/vertex-
ai/docs/generative-ai/learn/overview.

We can also generate code. Let’s see if the code-bison model can solve
FizzBuzz, a common interview question for entry-level software developer
positions:

question = """
Given an integer n, return a string array answer (1-indexed) wh
answer[i] == "FizzBuzz" if i is divisible by 3 and 5.
answer[i] == "Fizz" if i is divisible by 3.
answer[i] == "Buzz" if i is divisible by 5.
answer[i] == i (as a string) if none of the above conditions ar
"""
llm = VertexAI(model_name="code-bison")
llm_chain = LLMChain(prompt=prompt, llm=llm)
print(llm_chain.run(question))

We are getting this response:

```python
answer = []
for i in range(1, n + 1):
    if i % 3 == 0 and i % 5 == 0:
        answer.append("FizzBuzz")
    elif i % 3 == 0:
        answer.append("Fizz")
    elif i % 5 == 0:
        answer.append("Buzz")
    else:
        answer.append(str(i))
return answer
```

Would you hire code-bison for your team?

https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview

Jina AI

Jina AI, founded in February 2020 by Han Xiao and Xuanbin He, is a
German AI company based in Berlin that specializes in providing cloud-
native neural search solutions with models for text, image, audio, and video.
Their open-source neural search ecosystem enables businesses and
developers to easily build scalable and highly available neural search
solutions, allowing for efficient information retrieval. Recently, Jina AI
launched Finetuner, a tool that enables the fine-tuning of any deep neural
network to specific use cases and requirements.

The company raised $37.5 million in funding through three rounds, with
their most recent funding coming from a Series A round in November 2021.
Notable investors in Jina AI include GGV Capital and Canaan Partners.

You can set up a login at https://chat.jina.ai/api.

On the platform, we can set up APIs for different use cases such as image
caption, text embedding, image embedding, visual question answering,
visual reasoning, image upscale, or Chinese text embedding.

Here, we are setting up a Visual Question Answering API with the
recommended model:

https://chat.jina.ai/api

Figure 3.3: Visual Question Answering API in Jina AI

We get examples for client calls in Python and cURL, and a demo, where
we can ask a question. This is cool, but unfortunately, these APIs are not
available yet through LangChain. We can implement such calls ourselves by
subclassing the LLM class in LangChain as a custom LLM interface.

Let’s set up another chatbot, this time powered by Jina AI. We can generate
the API token, which we can set as JINACHAT_API_KEY , at
https://chat.jina.ai/api.

Let’s translate from English to French here:

from langchain.chat_models import JinaChat
from langchain.schema import HumanMessage
chat = JinaChat(temperature=0.)
messages = [
 HumanMessage(
 content="Translate this sentence from English to French
)

https://chat.jina.ai/api

]
chat(messages)

We should be seeing :

AIMessage(content="J'adore l'IA générative !", additional_kwargs

We can set different temperatures, where a low temperature makes the
responses more predictable. In this case, it makes only a minor difference.
We are starting the conversation with a system message clarifying the
purpose of the chatbot.

Let’s ask for some food recommendations:

from langchain.schema import SystemMessage
chat = JinaChat(temperature=0.)
chat(
 [
 SystemMessage(
 content="You help a user find a nutritious and tast
),
 HumanMessage(
 content="I like pasta with cheese, but I need to ea
)
]
)

I get this response in Jupyter – your answer could vary:

AIMessage(content='A tasty and nutritious option could be a vege

It ignored the one-word instruction, but I liked reading the ideas. I think I
should try this for my son. With other chatbots, I got Ratatouille as a
suggestion.

It’s important to understand the difference in LangChain between LLMs
and chat models. LLMs are text completion models that take a string
prompt as input and output a string completion. As mentioned, chat models
are like LLMs but are specifically designed for conversations. They take a
list of chat messages as input, labeled with the speaker, and return a chat
message as output.

Both LLMs and chat models implement the base language model interface,
which includes methods such as predict() and predict_messages() . This
shared interface allows for interchangeability between diverse types of
models in applications and between chat and LLM models.

Replicate

Established in 2019, Replicate Inc. is a San Francisco-based start-up that
presents a streamlined process to AI developers, where they can implement
and publish AI models with minimal code input through the utilization of
cloud technology. The platform works with private as well as public models
and enables model inference and fine-tuning. The firm, deriving its most
recent funding from a Series A funding round of which the invested total
was $12.5 million, was spearheaded by Andreessen Horowitz, and involved
the participation of Y Combinator, Sequoia, and various independent
investors.

Ben Firshman, who drove open-source product efforts at Docker, and
Andreas Jansson, a former machine learning engineer at Spotify, co-

founded Replicate Inc. with the mutual aspiration to eliminate the technical
barriers that were hindering the mass acceptance of AI. Consequently, they
created Cog, an open-source tool that packs machine learning models into a
standard production-ready container that can run on any current operating
system and automatically generate an API. These containers can also be
deployed on clusters of GPUs through the Replicate platform. As a result,
developers can concentrate on other essential tasks, thereby enhancing their
productivity.

Replicate has lots of models available on their platform:
https://replicate.com/explore.

You can authenticate with your GitHub credentials at
https://replicate.com/. If you then click on your user icon at the
top left, you’ll find the API tokens – just copy the API key and make it
available in your environment as REPLICATE_API_TOKEN . To run bigger jobs,
you need to set up your credit card (under billing).

Here is a simple example for creating an image:

from langchain.llms import Replicate
text2image = Replicate(
 model="stability-ai/stable-diffusion:db21e45d3f7023abc2a46e
 input={"image_dimensions": "512x512"},
)
image_url = text2image("a book cover for a book about creating

I got this image:

https://replicate.com/explore
https://replicate.com/

Figure 3.4: A book cover for a book about generative AI with Python – Stable Diffusion

I think it’s a nice image – is that an AI chip that creates art?

Others

There are a lot more providers, and we’ll encounter quite a few throughout
the book. Sadly, as you’ll see, I faced issues with Azure and Anthropic, two
major providers. Let’s still have a quick look at them!

Azure

Azure, the cloud computing platform run by Microsoft, integrates with
OpenAI to provide powerful language models like GPT-3, Codex, and
Embeddings. It offers access, management, and development of
applications and services through its global data centers for use cases such

as writing assistance, summarization, code generation, and semantic search.
It provides capabilities like software as a service (SaaS), platform as a
service (PaaS), and infrastructure as a service (IaaS).

By authenticating either through GitHub or Microsoft credentials, we can
create an account on Azure at https://azure.microsoft.com/.

We can then create new API keys under Cognitive Services | Azure
OpenAI. There are a few more steps involved, and personally, I found this
process frustrating. After going through account validation a few times,
getting denied, and trying to contact Microsoft customer service, I gave up.
For this reason, I don’t have a practical example with Azure. Your mileage
might vary – if you are already using Microsoft services, this process could
be pain-free for you.

After setting up, the models should be accessible through the
AzureOpenAI() class interface in LangChain.

Anthropic

Anthropic is an AI start-up and public-benefit corporation based in the
United States. It was founded in 2021 by former members of OpenAI,
including siblings Daniela Amodei and Dario Amodei. The company
specializes in developing general AI systems and language models with a
focus on responsible AI usage. As of July 2023, Anthropic has raised $1.5
billion in funding. They have also worked on projects like Claude, an AI
chatbot like OpenAI’s ChatGPT, and have researched the interpretability of
machine learning systems, specifically the Transformer architecture.

Unfortunately, Claude is not available to the general public (yet). You need
to apply for access to use Claude and set the ANTHROPIC_API_KEY

https://azure.microsoft.com/

environment variable.

Next, let’s see how to run models locally.

Exploring local models

We can also run local models from LangChain. The advantages of running
models locally are complete control over the model and not sharing any
data over the internet.

Please note that we don’t need an API token for local
models!

Let’s preface this with a note of caution: an LLM is big, which means that
it’ll take up a lot of disk space or system memory. The use cases presented
in this section should run even on old hardware, like an old MacBook;
however, if you choose a big model, it can take an exceptionally long time
to run or may crash the Jupyter notebook. One of the main bottlenecks is
memory requirement. In rough terms, if quantized (roughly, compressed;
we’ll discuss quantization in Chapter 8, Customizing LLMs and Their
Output), 1 billion parameters correspond to 1 GB of RAM (please note that
not all models will come quantized).

You can also run these models on hosted resources or services such as
Kubernetes or Google Colab. These will let you run on machines with a lot
of memory and different hardware including Tensor Processing Units
(TPUs) or GPUs.

We’ll have a look here at Hugging Face’s transformers , llama .cpp , and
GPT4All. These tools provide huge power and are full of great functionality

too broad to cover in this chapter. Let’s start by showing how we can run a
model with the transformers library by Hugging Face.

Hugging Face Transformers

I’ll quickly show the general recipe for setting up and running a pipeline:

from transformers import pipeline
import torch
generate_text = pipeline(
 model="aisquared/dlite-v1-355m",
 torch_dtype=torch.bfloat16,
 trust_remote_code=True,
 device_map="auto",
 framework="pt"
)
generate_text("In this chapter, we'll discuss first steps with

Running the preceding code will download everything that’s needed for the
model such as the tokenizer and model weights from Hugging Face. This
model is quite small (355 million parameters) but relatively performant and
instruction-tuned for conversations. We can then run a text completion to
give us some inspiration for this chapter.

I haven’t included accelerate in the main requirements, but
I’ve included the transformers library. If you don’t have all
libraries installed, make sure you execute this command:

pip install transformers accelerate torch

To plug this pipeline into a LangChain agent or chain, we can use it the
same way that we’ve seen in the other examples in this chapter:

from langchain import PromptTemplate, LLMChain
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["qu
llm_chain = LLMChain(prompt=prompt, llm=generate_text)
question = "What is electroencephalography?"
print(llm_chain.run(question))

In this example, we also see the use of a PromptTemplate that gives specific
instructions for the task.

llama.cpp is a C++ port of Facebook’s LLaMA, LLaMA 2, and other
derivative models with a similar architecture. Let’s have a look at this next.

llama.cpp

Written and maintained by Georgi Gerganov, llama.cpp is a C++ toolkit
that executes models based on architectures based on or like LLaMA, one
of the first large open-source models, which was released by Meta, and
which spawned the development of many other models in turn. One of the
main use cases of llama.cpp is to run models efficiently on the CPU;
however, there are also some options for GPU.

Please note that you need to have an md5 checksum tool installed. This is
included by default in several Linux distributions such as Ubuntu. On
macOS, you can install it with brew like this:

brew install md5sha1sum

We need to download the llama.cpp repository from GitHub. You can do
this online by choosing one of the download options on GitHub, or you can
use a git command from the terminal like this:

git clone https://github.com/ggerganov/llama.cpp.git

Then we need to install the Python requirements, which we can do with the
pip package installer – let’s also switch to the llama.cpp project root
directory for convenience:

cd llama.cpp
pip install -r requirements.txt

You might want to create a Python environment before you install the
requirements, but this is up to you. In my case, I received an error message
at the end that a few libraries were missing, so I had to execute this
command:

pip install 'blosc2==2.0.0' cython FuzzyTM

Now we need to compile llama.cpp . We can parallelize the build with 4
processes:

make -C . -j4 # runs make in subdir with 4 processes

To get the Llama model weights, you need to sign up with the T&Cs and
wait for a registration email from Meta. There are tools such as the llama
model downloader in the pyllama project, but please be advised that they
might not conform to the license stipulations by Meta.

There are also many other models with more permissive licensing such as
Falcon or Mistral, Vicuna, OpenLLaMA, or Alpaca. Let’s assume you
download the model weights and the tokenizer model for the OpenLLaMA
3B model using the link on the llama.cpp GitHub page. The model file
should be about 6.8 Gigabyes big, the tokenizer is much smaller. You can
move the two files into the models/3B directory.

You can download models in much bigger sizes such as 13B, 30B, and 65B;
however, a note of caution is in order here: these models are big both in
terms of memory and disk space. We have to convert the model to
llama.cpp format, which is called ggml , using the convert script:

python3 convert.py models/3B/ --ctx 2048.

Then we can optionally quantize the models to save memory when doing
inference. Quantization refers to reducing the number of bits that are used
to store weight:

./quantize ./models/3B/ggml-model-f16.gguf ./models/3B/ggml-mode

This last file is much smaller than the previous files and will take up much
less space in memory as well, which means that you can run it on smaller
machines. Once we have chosen a model that we want to run, we can
integrate it into an agent or a chain, for example, as follows:

llm = LlamaCpp(
 model_path="./ggml-model-q4_0.bin",
 verbose=True
)

GPT4All Is a fantastic tool that not only includes running but also serving
and customizing models.

GPT4All

This tool is closely related to llama.cpp, and it’s based on an interface with
llama.cpp. Compared to llama.cpp, however, it’s much more convenient to
use and much easier to install. The setup instructions for this book already
include the gpt4all library, which is needed.

As for model support, GPT4All supports a large array of Transformer
architectures:

GPT-J
LLaMA (via llama.cpp)
Mosaic ML’s MPT architecture
Replit
Falcon
BigCode’s StarCoder

You can find a list of all available models on the project website, where you
can also see their results in important benchmarks:
https://gpt4all.io/.

Here’s a quick example of text generation with GPT4All:

from langchain.llms import GPT4All
model = GPT4All(model="mistral-7b-openorca.Q4_0.gguf", n_ctx=51
response = model(
 "We can run large language models locally for all kinds of
)

https://gpt4all.io/

Executing this should first download (if not downloaded yet) the model,
which is one of the best chat model available through GPT4All, pre-trained
by the French startup Mistral AI, and fine-tuned by the OpenOrca AI
initiative. This model requires 3.83 GB of harddisk to store and 8 GB of
RAM to run. Then we should hopefully see some convincing arguments for
running LLMs locally.

This should serve as a first introduction to integrations with local models. In
the next section, we’ll discuss building a text classification application in
LangChain to assist customer service agents. The goal is to categorize
customer emails based on intent, extract sentiment, and generate summaries
to help agents understand and respond faster.

Building an application for

customer service

Customer service agents are responsible for answering customer inquiries,
resolving issues, and addressing complaints. Their work is crucial for
maintaining customer satisfaction and loyalty, which directly affects a
company’s reputation and financial success.

Generative AI can assist customer service agents in several ways:

Sentiment classification: This helps identify customer emotions and
allows agents to personalize their responses.
Summarization: This enables agents to understand the key points of
lengthy customer messages and save time.
Intent classification: Similar to summarization, this helps predict the
customer’s purpose and allows for faster problem-solving.

Answer suggestions: This provides agents with suggested responses to
common inquiries, ensuring that accurate and consistent messaging is
provided.

These approaches combined can help customer service agents respond more
accurately and in a timely manner, improving customer satisfaction.
Customer service is crucial for maintaining customer satisfaction and
loyalty. Generative AI can help agents in several ways – sentiment analysis
to gauge emotion, summarization to identify key points, and intent
classification to determine purpose. Combined, these can enable more
accurate, timely responses.

LangChain provides the flexibility to leverage different models. LangChain
comes with many integrations that can enable us to tackle a wide range of
text problems. We have a choice between many different integrations to
perform these tasks.

We can access all kinds of models for open-domain classification and
sentiment and smaller transformer models through Hugging Face for
focused tasks. We’ll build a prototype that uses sentiment analysis to
classify email sentiment, summarization to condense lengthy text, and
intent classification to categorize the issue.

Given a document such as an email, we want to classify it into different
categories related to intent, extract the sentiment, and provide a summary.
We will work on other projects for question-answering in Chapter 5,
Building a Chatbot Like ChatGPT.

We could ask any LLM to give us an open-domain (any category)
classification or choose between multiple categories. In particular, because
of their large training size, LLMs are enormously powerful models,
especially when given few-shot prompts, for sentiment analysis that don’t

need any additional training. This was analyzed by Zengzhi Wang and
others in their April 2023 study, Is ChatGPT a Good Sentiment Analyzer? A
Preliminary Study.

A prompt for an LLM for sentiment analysis could be something like this:

Given this text, what is the sentiment conveyed? Is it positive
Text: {sentence}
Sentiment:

LLMs can also be highly effective at summarization, much better than any
previous models. The downside can be that these model calls are slower
than more traditional machine learning models and more expensive.

If we want to try out more traditional or smaller models, we can rely on
libraries such as spaCy or access them through specialized providers.
Cohere and other providers have text classification and sentiment analysis
as part of their capabilities. For example, NLP Cloud’s model list includes
spaCy and many others: https://docs.nlpcloud.com/#models-
list.

Many Hugging Face models are supported for these tasks, including:

Document question-answering
Summarization
Text classification
Text question-answering
Translation

We can execute these models either locally by running a pipeline in
transformer, remotely on the Hugging Face Hub server (HuggingFaceHub),

https://docs.nlpcloud.com/#models-list

or as a tool through the load_huggingface_tool() loader.

Hugging Face contains thousands of models, many fine-tuned for particular
domains. For example, ProsusAI/finbert is a BERT model that was trained
on a dataset called Financial PhraseBank and can analyze the sentiment of
financial text. We could also use any local model. For text classification, the
models tend to be much smaller, so this would be less of a drag on
resources. Finally, text classification could also be a case for embeddings,
which we’ll discuss in Chapter 5, Building a Chatbot Like ChatGPT.

I’ve decided to try and manage as much as I can with smaller models that I
can find on Hugging Face for this exercise.

We can list the 5 most downloaded models on Hugging Face Hub for text
classification through the Hugging Face API:

from huggingface_hub import list_models
def list_most_popular(task: str):
 for rank, model in enumerate(
 list_models(filter=task, sort="downloads", direction=-1
):
 if rank == 5:
 break
 print(f"{model.id}, {model.downloads}\n")
list_most_popular("text-classification")

Let’s see the list:

Model Downloads

distilbert-base-uncased-finetuned-sst-2-english 40,672,289

cardiffnlp/twitter-roberta-base-sentiment 9,292,338

MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli 7,907,049

cardiffnlp/twitter-roberta-base-irony 7,023,579

SamLowe/roberta-base-go_emotions 6,706,653

Table 3.2: The most popular text classification models on Hugging Face Hub

Generally, we should see that these models are about small ranges of
categories such as sentiment, emotions, irony, or well-formedness. Let’s use
a sentiment model with a customer email, which should be a common use
case in customer service.

I’ve asked GPT-3.5 to put together a rambling customer email complaining
about a coffee machine – I’ve shortened it a bit here. You can find the full
email on GitHub. Let’s see what our sentiment model has to say:

from transformers import pipeline
customer_email = """
I am writing to pour my heart out about the recent unfortunate
Its once elegant exterior was marred by the scars of travel, re
"""
sentiment_model = pipeline(
 task="sentiment-analysis",
 model="cardiffnlp/twitter-roberta-base-sentiment"
)
print(sentiment_model(customer_email))

The sentiment model we are using here, Twitter-roBERTa-base, was trained
on tweets, so it might not be the most adequate use case. Apart from
emotion sentiment analysis, this model can also perform other tasks such as
emotion recognition (anger, joy, sadness, or optimism), emoji prediction,
irony detection, hate speech detection, offensive language identification,
and stance detection (favor, neutral, or against).

For the sentiment analysis, we’ll get a rating and a numeric score that
expresses confidence in the label. These are the labels:

0 – negative

1 – neutral
2 – positive

Please make sure you have all the dependencies installed according to
instructions in order to execute this. I am getting this result:

[{'label': 'LABEL_0', 'score': 0.5822020173072815}]

Not a happy camper.

For comparison, if the email says “I am so angry and sad, I want to kill
myself,” we should get a score of close to 0.98 for the same label. We could
try out other models or train better models once we have established metrics
to work against.

Let’s move on!

Here are the 5 most popular models for summarization as well (downloads
at the time of writing, October 2023):

Model Downloads

facebook/bart-large-cnn 4,637,417

t5-small 2,492,451

t5-base 1,887,661

sshleifer/distilbart-cnn-12-6 715,809

t5-large 332,854

Table 3.3: The most popular summarization models on Hugging Face Hub

All these models have a small footprint, which is nice, but to apply them in
earnest, we should make sure they are reliable enough.

Let’s execute the summarization model remotely on a server. Please note
that you need to have your HUGGINGFACEHUB_API_TOKEN set for this to work:

from langchain import HuggingFaceHub
summarizer = HuggingFaceHub(
 repo_id="facebook/bart-large-cnn",
 model_kwargs={"temperature":0, "max_length":180}
)
def summarize(llm, text) -> str:
 return llm(f"Summarize this: {text}!")
summarize(summarizer, customer_email)

After executing this, I see this summary:

A customer's coffee machine arrived ominously broken, evoking a

This summary is just passable, but not very convincing. There is still a lot
of rambling in the summary. We could try other models or just go for an
LLM with a prompt asking to summarize. We’ll look at summarization in
much more detail in Chapter 4, Building Capable Assistants. Let’s move
on.

It could be quite useful to know what kind of issue the customer is writing
about. Let’s ask Vertex AI:

Before you execute the following code, make sure you have
authenticated with GCP and you’ve set your GCP project

according to the instructions mentioned in the section about
Vertex AI.

from langchain.llms import VertexAI
from langchain import PromptTemplate, LLMChain
template = """Given this text, decide what is the issue the cus
* product issues
* delivery problems
* missing or late orders
* wrong product
* cancellation request
* refund or exchange
* bad support experience
* no clear reason to be upset
Text: {email}
Category:
"""
prompt = PromptTemplate(template=template, input_variables=["em
llm = VertexAI()
llm_chain = LLMChain(prompt=prompt, llm=llm, verbose=True)
print(llm_chain.run(customer_email))

We get product issues back, which is correct for the long email example
that I am using here.

I hope it was exciting to see how quickly we can throw a few models and
tools together in LangChain to get something that looks actually useful.
With thoughtful implementation, such AI automation can complement
human agents – handling frequent questions to allow focusing on complex
problems. Overall, this demonstrates generative AI’s potential to enhance
customer service workflows.

We could easily expose this in a graphical interface for customer service
agents to see and interact with. This is something we will do in the next

chapter.

Let’s wrap up!

Summary

In this chapter, we walked through four distinct ways of installing
LangChain and other libraries needed in this book as an environment. Then,
we introduced several providers of models for text and images. For each of
them, we explained where to get the API token, and demonstrated how to
call a model.

Finally, we developed an LLM app for text categorization (intent
classification) and sentiment analysis in a use case for customer service.
This showcases LangChain’s ease in orchestrating multiple models to create
useful applications. By chaining together various functionalities in
LangChain, we can help reduce response times in customer service and
make sure answers are accurate and to the point.

In Chapter 4, Building Capable Assistants and Chapter 5, Building a
Chatbot Like ChatGPT, we’ll dive more into use cases such as question
answering in chatbots through augmentation with tools and retrieval.

Questions

Please look to see whether you can provide answers to these questions. I’d
recommend you go back to the corresponding sections of this chapter if you
are unsure about any of them:

1. How do you install LangChain?
2. List at least 4 cloud providers of LLMs apart from OpenAI!

3. What are Jina AI and Hugging Face?
4. How do you generate images with LangChain?
5. How do you run a model locally on your own machine rather than

through a service?
6. How do you perform text classification in LangChain?
7. How can we help customer service agents in their work through

generative AI?

Join our community on

Discord

Join our community’s Discord space for discussions with the authors and
other readers:

https://packt.link/lang

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Chapter_03.xhtml
https://oceanofpdf.com/

4

Building Capable

Assistants

As LLMs continue to advance, a key challenge is transforming their
impressive fluency into reliably capable assistants. This chapter explores
methods for instilling greater intelligence, productivity, and trustworthiness
in LLMs. The unifying theme across these approaches is enhancing LLMs
through prompts, tools, and structured reasoning techniques. We’ll have
sample applications that demonstrate these techniques in this chapter.

We will begin by addressing the critical weakness of hallucinated content
through automatic fact-checking. By verifying claims against the available
evidence, we can reduce the spread of misinformation. We will continue by
discussing a key strength of LLMs with important applications –
summarization, which we’ll go into with the integration of prompts at
different levels of sophistication, and the map reduce approach for very
long documents. We will then move on to information extraction from
documents with function calls, which leads to the topic of tool integrations.
We’ll implement an application that showcases how connecting external
data and services can augment LLMs’ limited world knowledge. Finally, we
will further extend this application through the application of reasoning
strategies.

In short, this chapter covers:

Mitigating hallucinations through fact-checking
Summarizing information
Extracting information from documents
Answering questions with tools
Exploring reasoning strategies

Let’s get started with addressing hallucinations through automatic fact-
checking!

Mitigating hallucinations

through fact-checking

As discussed in previous chapters, hallucination in LLMs refers to the
generated text being unfaithful or nonsensical compared to the input. It
contrasts with faithfulness, where outputs stay consistent with the source.
Hallucinations can spread misinformation like disinformation, rumors, and
deceptive content. This poses threats to society, including distrust in
science, polarization, and democratic processes.

Journalism and archival studies have researched misinformation
extensively. Fact-checking initiatives provide training and resources to
journalists and independent checkers, allowing expert verification at scale.
Addressing false claims is crucial to preserving information integrity and
combatting detrimental societal impacts.

One technique to address hallucinations is automatic fact-checking –
verifying claims made by LLMs against evidence from external sources.
This allows for catching incorrect or unverified statements.

Fact-checking involves three main stages:

1. Claim detection: Identify parts needing verification

2. Evidence retrieval: Find sources supporting or refuting the claim

3. Verdict prediction: Assess claim veracity based on evidence

Alternative terms for the last two stages are justification production and
verdict prediction.

We can see the general idea of these three stages illustrated in the following
diagram (source – https://github.com/Cartus/Automated-
Fact-Checking-Resources by Zhijiang Guo):

Figure 4.1: Automatic fact-checking pipeline in three stages

Pre-trained LLMs contain extensive world knowledge that can be prompted
for facts. Additionally, external tools can search knowledge bases,
Wikipedia, textbooks, and corpora for evidence. By grounding claims in
data, fact-checking makes LLMs more reliable.

Pre-trained LLMs contain extensive world knowledge from their training
data. Starting with the 24-layer BERT-Large in 2018, language models have
been pre-trained on large knowledge bases such as Wikipedia; therefore,
they would be able to answer knowledge questions from Wikipedia or –
since their training set increasingly includes other sources – the internet,
textbooks, arXiv, and GitHub.

https://github.com/Cartus/Automated-Fact-Checking-Resources

We can prompt them with masking and other techniques to retrieve facts for
evidence. For example, to answer the question “Where is Microsoft’s
headquarters located?”, the question would be rewritten as “Microsoft’s
headquarters is in [MASK]” and fed into a language model for the answer.

Alternatively, we can integrate external tools to search knowledge bases,
Wikipedia, textbooks, and other corpora. The key idea is verifying
hallucinated claims by grounding them in factual data sources.

Automatic fact-checking provides a way to make LLMs more reliable by
checking that their responses align with real-world evidence. In the next
sections, we’ll demonstrate this approach.

In LangChain, we have a chain available for fact-checking with prompt
chaining, where a model actively questions the assumptions that went into a
statement. In this self-checking chain, LLMCheckerChain , the model is
prompted sequentially – first, to make the assumptions explicit, which looks
like this:

Here's a statement: {statement}\nMake a bullet point list of th

Please note that this is a string template, where the elements in curly
brackets will be replaced by variables. Next, these assumptions are fed back
to the model in order to check them one by one with a prompt like this:

Here is a bullet point list of assertions:
 {assertions}
 For each assertion, determine whether it is true or false.

Finally, the model is tasked to make a final judgment:

In light of the above facts, how would you answer the question

LLMCheckerChain does this all by itself, as this example shows:

from langchain.chains import LLMCheckerChain
from langchain.llms import OpenAI
llm = OpenAI(temperature=0.7)
text = "What type of mammal lays the biggest eggs?"
checker_chain = LLMCheckerChain.from_llm(llm, verbose=True)
checker_chain.run(text)

The model can return different results to this question, some of which are
wrong, and some of which it would correctly identify as false. When I was
trying this out, I got results such as the blue whale, the North American
beaver, and the extinct Giant Moa in response to my question "What type
of mammal lays the biggest eggs?" . The following is the right answer:

Monotremes, a type of mammal found in Australia and parts of New
• Monotremes can be found in Australia and New Guinea
• The largest eggs in the mammalian world are laid by monotremes
• The American echidna lays eggs that can grow to 10 cm in lengt
• Dunnarts lay eggs that can exceed 5 cm in length
• Monotremes can be found in Australia and New Guinea – True
• The largest eggs in the mammalian world are laid by monotremes
• The American echidna lays eggs that can grow to 10 cm in lengt
• Dunnarts lay eggs that can exceed 5 cm in length – False, dunn
The largest eggs in the mammalian world are laid by monotremes,
> Finished chain.

So, while this technique does not guarantee correct answers, it can put a
stop to some incorrect results. Fact-checking approaches involve
decomposing claims into smaller checkable queries, which can be

formulated as question-answering tasks. Tools designed for searching
domain datasets can assist fact-checkers in finding evidence effectively.
Off-the-shelf search engines like Google and Bing can also retrieve both
topically and evidentially relevant content to capture the veracity of a
statement accurately. We’ll apply this approach to return results based on
web searches and other applications of this chapter.

In the next section, we’ll discuss automating the process of summarizing
texts and longer documents such as research papers.

Summarizing information

In today’s fast-paced business and research landscape, keeping up with the
ever-increasing volume of information can be a daunting task. For
engineers and researchers in fields like computer science and artificial
intelligence, staying updated with the latest developments is crucial.
However, reading and comprehending numerous papers can be time-
consuming and labor-intensive. This is where automation comes into play.
As engineers, we are driven by the desire to build and innovate and avoid
repetitive tasks by automating them through the creation of pipelines and
processes. This approach, often mistaken for laziness, allows engineers to
focus on more complex challenges and utilize their skills more efficiently.

LLMs excel at condensing text through their strong language understanding
abilities. We will explore techniques for summarization using LangChain at
increasing levels of sophistication.

Basic prompting

For summarizing a couple of sentences, basic prompting works well.
Simply instruct the LLM on the desired length and provide a text:

from langchain import OpenAI
prompt = """
Summarize this text in one sentence:
{text}
"""
llm = OpenAI()
summary = llm(prompt.format(text=text))

This is similar to what we saw in Chapter 3, Getting Started with
LangChain. text is a string variable that can be any text that we want to
summarize.

We can also use the LangChain decorator syntax, which is implemented in
the LangChain decorators library, which you should have installed
together with all the other dependencies if you followed the instructions in
Chapter 3, Getting Started with LangChain.

LangChain Decorators provides a more Pythonic interface for defining and
executing prompts compared to base LangChain, making it easier to
leverage the power of LLMs. Function decorators translate prompt
documentation into executable code, enabling multiline definitions and
natural code flow.

Here’s a decorator example for summarization:

from langchain_decorators import llm_prompt
@llm_prompt
def summarize(text:str, length="short") -> str:
 """
 Summarize this text in {length} length:
 {text}
 """

 return
summary = summarize(text="let me tell you a boring story from w

The output, the value of the summary variable, I am getting is The speaker
is about to share a story from their youth . You can try more
meaningful and longer examples for summarization yourself.

The @llm_prompt decorator translates the docstring into a prompt and
handles executing it. Parameters are cleanly passed in and outputs are
parsed. This abstraction enables prompting in a natural Python style while
handling the complexity behind the scenes, making it easy to focus on
creating effective prompts. By providing this intuitive interface, LangChain
Decorators unlock the power of LLMs for developers.

Prompt templates

For dynamic inputs, prompt templates enable inserting text into predefined
prompts. Prompt templates allow variable length limits and modular prompt
design.

We can implement this in LangChain Expression Language (LCEL):

from langchain import PromptTemplate, OpenAI
from langchain.schema import StrOutputParser
llm = OpenAI()
prompt = PromptTemplate.from_template(
 "Summarize this text: {text}?"
)
runnable = prompt | llm | StrOutputParser()
summary = runnable.invoke({"text": text})

LCEL provides a declarative way to compose chains that is more intuitive
and productive than directly writing code. Key benefits of LCEL include
built-in support for asynchronous processing, batching, streaming,
fallbacks, parallelism, and seamless integration with LangSmith tracing.

In this case, runnable is a chain, where the prompt template, the LLM, and
the output parser are piped into one another.

Chain of density

Researchers at Salesforce (Adams and colleagues, 2023; From Sparse to
Dense: GPT-4 Summarization with Chain of Density Prompting) have
developed a prompt-guided technique called Chain of Density (CoD) to
incrementally increase the information density of GPT-4 generated
summaries while controlling length.

This is the prompt to use with CoD:

template = """Article: { text }
You will generate increasingly concise, entity-dense summaries
Repeat the following 2 steps 5 times.
Step 1. Identify 1-3 informative entities (";" delimited) from
Step 2. Write a new, denser summary of identical length which c
A missing entity is:
- relevant to the main story,
- specific yet concise (5 words or fewer),
- novel (not in the previous summary),
- faithful (present in the article),
- anywhere (can be located anywhere in the article).
Guidelines:
- The first summary should be long (4-5 sentences, ~80 words) y
- Make every word count: rewrite the previous summary to improv
- Make space with fusion, compression, and removal of uninforma
- The summaries should become highly dense and concise yet self
- Missing entities can appear anywhere in the new summary.
- Never drop entities from the previous summary. If space canno

Remember, use the exact same number of words for each summary.
Answer in JSON. The JSON should be a list (length 5) of diction
"""

Please note that you can easily adapt this to any kind of content and provide
a different set of guidelines to suit other applications.

The CoD prompt instructs highly powered LLMs such as GPT-4 to produce
an initial sparse, verbose summary of an article containing only a few
entities. It then iteratively identifies 1–3 missing entities and fuses them
into a rewrite of the previous summary in the same number of words.

This repeated rewriting under length constraint forces increasing
abstraction, fusion of details, and compression to make room for additional
entities in each step. The authors measure statistics like entity density and
source sentence alignment to characterize the densification effects.

Through five iterative steps, summaries become highly condensed with
more entities per token packed in through creative rewriting. The authors
conduct both human preference studies and GPT-4 scoring to evaluate the
impact on overall quality across the density spectrum.

The results reveal a trade-off between informativeness gained through
density and declining coherence from excessive compression. Optimal
density balances concision and clarity, with too many entities
overwhelming expression. This method and analysis sheds light on
controlling information density in AI text generation.

Please try this out for yourself!

Map-Reduce pipelines

LangChain supports a map reduce approach for processing documents
using LLMs, which allows for efficient processing and analysis of
documents. A chain can be applied to each document individually and then
we combine the outputs into a single document.

To summarize long documents, we can first split the document into smaller
parts (chunks) that are suitable for the token context length of the LLM, and
then a map-reduce chain can summarize these chunks independently before
recombining. This scales summarization to any length of text while
controlling chunk size.

The key steps are:

1. Map: Each document is passed through a summarization chain (LLM
chain).

2. Collapse (optional): The summarized documents are combined into a
single document.

3. Reduce: The collapsed document goes through a final LLM chain to
produce the output.

So, the map step applies a chain to each document in parallel. The reduce
step aggregates the mapped outputs and generates the final result.

Optional collapsing, which may also involve utilizing LLMs, makes sure
the data fits within sequence length limits. This compression step can be
performed recursively if needed.

This is illustrated in the figure here:

Figure 4.2: Map reduce chain in LangChain

This approach’s implications are that it allows the parallel processing of
documents and enables the use of LLMs for reasoning, generating, or
analyzing individual documents and combining their outputs.

Here’s a simple example of loading a PDF document and summarizing it:

from langchain.chains.summarize import load_summarize_chain
from langchain import OpenAI
from langchain.document_loaders import PyPDFLoader
pdf_file_path = "<pdf_file_path>"
pdf_loader = PyPDFLoader(pdf_file_path)
docs = pdf_loader.load_and_split()
llm = OpenAI()
chain = load_summarize_chain(llm, chain_type="map_reduce")
chain.run(docs)

The variable pdf_file_path is a string with the path of a PDF file. Please
replace the file path with the path to a PDF document.

The default prompt for both the map and reduce steps is this:

Write a concise summary of the following:
{text}
CONCISE SUMMARY:

We can specify any prompt for each step. In the text summarization
application developed for this chapter on GitHub, we can see how to pass
other prompts. On LangChainHub, we can see the question-answering-
with-sources prompt, which takes a reduce/combine prompt like this:

Given the following extracted parts of a long document and a que

In the preceding prompt, we could formulate a concrete question, but
equally, we could give the LLM a more abstract instruction to extract
assumptions and implications.

The text would be the summaries from the map steps. An instruction like
that would help against hallucinations. Other examples of instructions could
be translating the document into a different language or rephrasing in a
certain style.

By changing the prompt, we can ask any question to be answered from
these documents. This can be built out into an automation tool that can
quickly summarize the content of long texts in a more digestible format, as
you should be able to tell from the summarize package in the book’s
GitHub repository, which shows how to focus on different perspectives and
structures of the response (adapted from David Shapiro).

The tool on GitHub will summarize the core assertions, implications, and
mechanics of a paper in a more concise and simplified manner. It can also
answer specific questions about the paper, making it a valuable resource for
literature reviews and accelerating scientific research. Overall, the approach
aims to benefit researchers by providing a more efficient and accessible
way to stay updated on the latest research.

Thoughtful prompt engineering with LangChain provides
powerful summarization capabilities using LLMs. A few
practical tips are:

Start with simpler approaches and move to map-reduce
if needed
Tune chunk size to balance context limits and
parallelism
Customize map and reduce prompts for the best results
Compress or recursively reduce chunks to fit context
limits

Once we start making a lot of calls, especially in the map step, if we use a
cloud provider, we’ll see tokens and, therefore, costs increase. It’s time to
give this some visibility!

Monitoring token usage

When using LLMs, especially in long loops such as with map operations,
it’s important to track the token usage and understand how much money
you are spending.

For any serious usage of generative AI, we need to understand the
capabilities, pricing options, and use cases for different language models.
All cloud providers provide different models that cater to various NLP
needs. For example, OpenAI exposes powerful language models suitable
for solving complex problems with NLP and offers flexible pricing options
based on the size and number of tokens used.

For example, ChatGPT models, like GPT-3.5-Turbo, specialize in dialogue
applications such as chatbots and virtual assistants. They excel at generating
responses with accuracy and fluency. Different models within the
InstructGPT family, designed for single-turn instruction following, such as
Ada and Davinci, offer varying levels of speed and power. Ada is the fastest
model, suitable for applications where speed is crucial, while Davinci is the
most powerful model, capable of handling complex instructions. The
pricing of models depends on the model’s capabilities and ranges from low-
cost options like Ada to more expensive options like Davinci.

OpenAI provides DALL·E, Whisper, and API services for various
applications, such as image generation, speech transcription, translation,
and access to language models. DALL·E is an AI-powered image
generation model that can be seamlessly integrated into apps for generating
and editing novel images and art. OpenAI offers three tiers of resolution,
allowing users to choose the level of detail they need. Higher resolutions
offer more complexity and detail, while lower resolutions provide a more
abstract representation. The price per image varies based on the resolution.

Whisper is an AI tool that can transcribe speech into text and translate
multiple languages into English. It helps capture conversations, facilitates
communication, and improves understanding across languages. The cost of
using Whisper is based on a per-minute rate.

We can track the token usage in OpenAI models by hooking into the
OpenAI callback:

from langchain import OpenAI, PromptTemplate
from langchain.callbacks import get_openai_callback
llm_chain = PromptTemplate.from_template("Tell me a joke about
with get_openai_callback() as cb:
 response = llm_chain.invoke(dict(topic="light bulbs"))
 print(response)
 print(f"Total Tokens: {cb.total_tokens}")
 print(f"Prompt Tokens: {cb.prompt_tokens}")
 print(f"Completion Tokens: {cb.completion_tokens}")
 print(f"Total Cost (USD): ${cb.total_cost}")

We should see an output with the costs and tokens. I am getting this output
when I run this:

Q: How many light bulbs does it take to change people's minds?
A: Depends on how stubborn they are!
Total Tokens: 36
Prompt Tokens: 8
Completion Tokens: 28
Total Cost (USD): $0.00072

You can change the parameters of the model and the prompt, and you
should see costs and tokens changing as a consequence.

There are two other ways of getting the token usage. As an alternative to the
OpenAI callback, the generate() method of the llm class returns a
response of type LLMResult instead of a string. This includes token usages
and finish reason, for example (from the LangChain docs):

input_list = [
 {"product": "socks"},

 {"product": "computer"},
 {"product": "shoes"}
]
llm_chain.generate(input_list)

The result looks like this:

 LLMResult(generations=[[Generation(text='\n\nSocktastic!', g

Finally, the chat completions response format in the OpenAI API includes a
usage object with token information; for example, it could look like this
(excerpt):

 {
 "model": "gpt-3.5-turbo-0613",
 "object": "chat.completion",
 "usage": {
 "completion_tokens": 17,
 "prompt_tokens": 57,
 "total_tokens": 74
 }
}

This can be extremely helpful for understanding how much money you are
spending on distinct parts of your application. In Chapter 9, Generative AI
in Production. we’ll look at LangSmith and similar tools that provide
additional observability of LLMs in action, including their token usage.

Next, we’ll look at how to extract certain pieces of information from
documents using OpenAI functions with LangChain.

Extracting information from

documents

In June 2023, OpenAI announced updates to OpenAI’s API, including new
capabilities for function calling, which enhanced functionality. OpenAI’s
addition of function calling builds on instruction tuning. By describing
functions in a schema, developers can tune LLMs to return structured
outputs adhering to that schema – for example, extracting entities from text
by outputting them in a predefined JSON format.

Function calling enables developers to create chatbots that can answer
questions using external tools or OpenAI plugins. It also allows for
converting natural language queries into API calls or database queries and
extracting structured data from text.

Developers can now describe functions to the gpt-4-0613 and gpt-3.5-
turbo-0613 models and have the models intelligently generate a JSON
object containing arguments to call those functions. This feature aims to
enhance the connection between GPT models and external tools and APIs,
providing a reliable way to retrieve structured data from the models.

The mechanics of the update involve using new API parameters, namely
functions , in the /v1/chat/completions endpoint. The functions
parameter is defined through a name, description, parameters, and the
function to call itself. Developers can describe functions to the model using
JSON schema and specify the desired function to be called.

In LangChain, we can use these function calls in OpenAI for information
extraction or for calling plugins. For information extraction, we can obtain
specific entities and their properties from a text and their properties from a
document in an extraction chain with OpenAI chat models. For example,

this can help identify the people mentioned in the text. By using the
OpenAI functions parameter and specifying a schema, it ensures that the
model outputs the desired entities and properties with their appropriate
types.

The implications of this approach are that it allows for precise extraction of
entities by defining a schema with the desired properties and their types. It
also enables specifying which properties are required and which are
optional.

The default format for the schema is a dictionary, but we can also define
properties and their types in Pydantic, a popular parsing library, providing
control and flexibility in the extraction process.

Here’s an example of a desired schema for information in a Curriculum
Vitae (CV):

from typing import Optional
from pydantic import BaseModel
class Experience(BaseModel):
 start_date: Optional[str]
 end_date: Optional[str]
 description: Optional[str]
class Study(Experience):
 degree: Optional[str]
 university: Optional[str]
 country: Optional[str]
 grade: Optional[str]
class WorkExperience(Experience):
 company: str
 job_title: str
class Resume(BaseModel):
 first_name: str
 last_name: str
 linkedin_url: Optional[str]
 email_address: Optional[str]
 nationality: Optional[str]

 skill: Optional[str]
 study: Optional[Study]
 work_experience: Optional[WorkExperience]
 hobby: Optional[str]

We can use this for information extraction from a CV.

Please note that you should set up your environment according to the
instructions in Chapter 3, Getting Started with LangChain. I’ve found it
most convenient to import my config module here and execute
setup_environment() . This adds two extra lines to the beginning of the
code:

from config import setup_environment
setup_environment()

This is my advice – you can take it or leave it.

Here’s an example CV from
https://github.com/xitanggg/open-resume:

https://github.com/xitanggg/open-resume

Figure 4.3: Extract of an example CV

We are going to try to parse the information from this resume.

Utilizing the create_extraction_chain_pydantic() function in LangChain,
we can provide our schema as input, and an output will be an instantiated
object that adheres to it. In its most simple terms, we can try this code
snippet:

from langchain.chains import create_extraction_chain_pydantic
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
pdf_file_path = "<pdf_file_path>"
pdf_loader = PyPDFLoader(pdf_file_path)
docs = pdf_loader.load_and_split()
please note that function calling is not enabled for all mode
llm = ChatOpenAI(model_name="gpt-3.5-turbo-0613")
chain = create_extraction_chain_pydantic(pydantic_schema=Resume
chain.run(docs)

Please note that the pdf_file_path variable should be the relative or
absolute path to a pdf file. We should get an output like this:

[Resume(first_name='John', last_name='Doe', linkedin_url='linked

This result is far from perfect – only one work experience gets parsed out.
But it’s a good start given the little effort we’ve put in so far. For a complete
example, please refer to the GitHub repository. We could add more
functionality, for example, to guess personality or leadership capability.

OpenAI injects these function calls into the system message in a certain
syntax, which their models have been optimized for. This implies that

functions count against the context limit and are correspondingly billed as
input tokens.

LangChain natively has the functionality to inject function calls as prompts.
This means we can use models from providers other than OpenAI for
function calls within LLM apps. We’ll look at this now, and we’ll build this
into an interactive web app with Streamlit.

Instruction tuning and function calling allow models to produce callable
code. This leads to tool integrations, where LLM agents can execute these
function calls to connect LLMs with live data, services, and runtime
environments. In the next section, we’ll discuss how tools can augment
context by retrieving external knowledge sources to enhance understanding.

Answering questions with

tools

LLMs are trained on general corpus data and may not be as effective for
tasks that require domain-specific knowledge. On their own, LLMs can’t
interact with the environment and access external data sources; however,
LangChain provides a platform for creating tools that access real-time
information and perform tasks such as weather forecasting, making
reservations, suggesting recipes, and managing tasks. Tools within the
framework of agents and chains allow for the development of applications
powered by LLMs that are data-aware and agentic and open up a wide
range of approaches to solving problems with LLMs, expanding their use
cases, and making them more versatile and powerful.

One important aspect of tools is their capability to work within specific
domains or process specific inputs. For example, an LLM lacks inherent

mathematical capabilities. However, a mathematical tool like a calculator
can accept mathematical expressions or equations as an input and calculate
the outcome. The LLM combined with such a mathematical tool performs
calculations and provides accurate answers.

Tools leverage contextual dialogue representation to search pertinent data
sources related to the user’s query. For example, for a question about a
historical event, tools could retrieve Wikipedia articles to augment context.

By grounding responses in real-time data, tools reduce hallucinated or
incorrect replies. Contextual tool use complements chatbots’ core language
capabilities to make responses more useful, correct, and aligned with real-
world knowledge. Tools provide creative solutions to problems and open up
new possibilities for LLMs in various domains. For example, a tool could
be developed to enable an LLM to perform advanced retrieval searches,
query a database for specific information, automate email writing, or even
handle phone calls.

Let’s see this in action!

Information retrieval with tools

We have quite a few tools available in LangChain, and – if that’s not
enough – it’s not hard to roll out our own tools. Let’s set up an agent with a
few tools:

from langchain.agents import (
 AgentExecutor, AgentType, initialize_agent, load_tools
)
from langchain.chat_models import ChatOpenAI
def load_agent() -> AgentExecutor:
 llm = ChatOpenAI(temperature=0, streaming=True)
 # DuckDuckGoSearchRun, wolfram alpha, arxiv search, wikiped

 # TODO: try wolfram-alpha!
 tools = load_tools(
 tool_names=["ddg-search", "wolfram-alpha", "arxiv", "wi
 llm=llm
)
 return initialize_agent(
 tools=tools, llm=llm, agent=AgentType.ZERO_SHOT_REACT_D
)

This function returns AgentExecutor , which is a chain; therefore, if we
wanted, we could integrate it into a larger chain. The Zero-Shot agent is a
general-purpose action agent, which we’ll discuss in the next section.

Please notice the streaming parameter in the ChatOpenAI constructor,
which is set to True . This makes for a better user experience since it means
that the text response will be updated as it comes in, rather than once all the
text has been completed. Currently, only the OpenAI, ChatOpenAI, and
ChatAnthropic implementations support streaming.

All the tools mentioned have their specific purpose that’s part of the
description, which is passed to the language model. These tools here are
plugged into the agent:

DuckDuckGo: A search engine that focuses on privacy; an added
advantage is that it doesn’t require developer signup
Wolfram Alpha: An integration that combines natural language
understanding with math capabilities, for questions like “What is 2x+5
= -3x + 7?”
arXiv: Search in academic pre-print publications; this is useful for
research-oriented questions
Wikipedia: For any question about entities of significant notoriety

Please note that to use Wolfram Alpha, you have to set up an account and
set the WOLFRAM_ALPHA_APPID environment variable with the developer token
you create at https://products.wolframalpha.com/api.
Please note that the website can sometimes be a bit slow, and it might take
patience to register.

There are a lot of other search tools integrated into LangChain apart from
DuckDuckGo that let you utilize Google or Bing search engines or work
with meta-search engines. There’s an Open-Meteo integration for weather
information; however, this information is also available through search.

Building a visual interface

After developing an intelligent agent with LangChain, the natural next step
is deploying it in an easy-to-use application. Streamlit provides an ideal
framework for this goal. As an open-source platform optimized for ML
workflows, Streamlit makes it simple to wrap our agent in an interactive
web application. So let’s make our agent available as a Streamlit app!

For this application, we’ll need the Streamlit, unstructured, and docx
libraries, among others. These are in the environment that we set up in
Chapter 3, Getting Started with LangChain.

Let’s write the code for this using the load_agent() function we’ve just
defined:

import streamlit as st
from langchain.callbacks import StreamlitCallbackHandler
chain = load_agent()
st_callback = StreamlitCallbackHandler(st.container())
if prompt := st.chat_input():
 st.chat_message("user").write(prompt)
 with st.chat_message("assistant"):

https://products.wolframalpha.com/api

 st_callback = StreamlitCallbackHandler(st.container())
 response = chain.run(prompt, callbacks=[st_callback])
 st.write(response)

Please notice that we are using the callback handler in the call to the chain,
which means that we’ll see responses as they come back from the model.
We can start the app locally from the terminal like this:

PYTHONPATH=. streamlit run question_answering/app.py

We can open our app in the browser. Here’s a screenshot that illustrates
what the app looks like:

Figure 4.4: Question-answering app in Streamlit

Deployment of Streamlit applications can be local or on a
server. Alternatively, you can deploy this on Streamlit
Community Cloud or on Hugging Face Spaces.

For Streamlit Community Cloud, do this:

1. Create a GitHub repository.
2. Go to Streamlit Community Cloud, click on New app,

and select the new repo.
3. Click Deploy!.

As for Hugging Face Spaces, it works like this:

1. Create a GitHub repo.
2. Create a Hugging Face account at
https://huggingface.co/.

3. Go to Spaces and click Create new Space. In the
form, set the fill in a name, type of space as Streamlit,
and choose the new repo.

The search works quite well although, depending on the tools used, it might
still come up with the wrong results. For the question about the mammal
with the largest egg, using DuckDuckGo, it comes back with a result that
discusses eggs in birds and mammals and sometimes concludes that the
ostrich is the mammal with the largest egg, although platypus also comes
back sometimes.

Here’s the log output (shortened) for the correct reasoning:

> Entering new AgentExecutor chain...
I'm not sure, but I think I can find the answer by searching onl
Action: duckduckgo_search
Action Input: "mammal that lays the biggest eggs"
Observation: Posnov / Getty Images. The western long-beaked echi
Final Answer: The platypus is the mammal that lays the biggest e
> Finished chain.

https://huggingface.co/

You can see that with a powerful framework for automation and problem-
solving at your behest, you can compress work that can take hundreds of
hours into minutes. You can play around with different research questions to
see how the tools are used. The actual implementation in the repository for
the book allows you to try out different tools and has an option for self-
verification.

Building a Streamlit app offers several key advantages:

Quickly create an intuitive graphical interface around
our chatbot without having to build a complex
frontend. Streamlit automatically handles elements like
input fields, buttons, and interactive widgets.
Seamlessly integrate the agent’s capabilities into an
app tailored for a specific use case, such as customer
support or research assistance. The interface can be
customized to match the domain.
Streamlit apps run Python code in real time, enabling
seamless connection to the agent’s backend API with
no added latency. Our LangChain workflows integrate
fluidly.
Easy sharing and deployment options including open-
source GitHub repos, personal Streamlit sharing links,
and Streamlit Community Cloud. This allows instantly
publishing and distributing the app.
Streamlit’s optimized performance for running models
and data workflows ensures responsiveness even with
large models. Our chatbot can scale gracefully.

The result is an elegant web interface that lets users
interact naturally with our LLM-powered agent.
Streamlit handles the complexity behind the scenes.

While our LLM app can provide answers to simple questions, its reasoning
abilities are still limited. In the following section, we’ll implement more
advanced types of agents.

Exploring reasoning

strategies

LLMs excel at pattern recognition in data but struggle with the symbolic
reasoning required for complex multi-step problems.

Implementing more advanced reasoning strategies would make our research
assistant far more capable. Hybrid systems that combine neural pattern
completion with deliberate symbolic manipulation can master skills
including these:

Multi-step deductive reasoning to draw conclusions from a chain of
facts
Mathematical reasoning like solving equations through a series of
transformations
Planning tactics to break down a problem into an optimized sequence
of actions

By integrating tools together with explicit reasoning steps instead of pure
pattern completion, our agent can tackle problems requiring abstraction and
imagination, and can arrive at a complex understanding of the world

enabling them to hold more meaningful conversations about complex
concepts.

An illustration of augmenting LLMs through tools and reasoning is shown
here (source – https://github.com/billxbf/ReWOO,
implementation for the paper Decoupling Reasoning from Observations for
Efficient Augmented Language Models Resources, by Binfeng Xu and
others, May 2023):

Figure 4.5: Tool-augmented LLM paradigm

The tools are the available resources that the agent can use, such as search
engines or databases. The LLMChain is responsible for generating text
prompts and parsing the output to determine the next action. The agent class
uses the output of the LLMChain to decide which action to take.

While tool-augmented language models combine LLMs with external
resources like search engines and databases to enhance reasoning

https://github.com/billxbf/ReWOO

capabilities, this can be further enhanced with agents.

In LangChain, this consists of three parts:

Tools
An LLMChain

The agent itself

There are two key agent architectures:

Action agents reason iteratively based on observations after each
action.
Plan-and-execute agents plan completely upfront before taking any
action.

In observation-dependent reasoning, the agent iteratively provides
context and examples to an LLM to generate thoughts and actions.
Observations from tools are incorporated to inform the next reasoning step.
This approach is used in action agents.

An alternative is plan-and-execute agents that first create a complete plan
and then gather evidence to execute it. The Planner LLM produces a list of
plans (P). The agent gathers evidence (E) using tools. P and E are
combined and fed to the Solver LLM to generate the final output

Plan-and-execute separates planning from execution. Smaller specialized
models can be used for the Planner and Solver roles. The trade-off is that
plan-and-execute requires more upfront planning.

We can see the reasoning with the observation pattern in the following
diagram (source – https://arxiv.org/abs/2305.18323; Binfeng
Xu and others, May 2023):

https://arxiv.org/abs/2305.18323

Figure 4.6: Reasoning with observation

Observation-dependent reasoning involves making judgments,
predictions, or choices based on the current state of knowledge or the
evidence fetched through observation. In each iteration, the agent provides
context and examples to the LLM. A user’s task is first combined with the
context and examples and given to the LLM to initiate reasoning. The LLM
generates a thought and an action and then waits for an observation from
tools. The observation is added to the prompt to initiate the next call to the
LLM. In LangChain, this is an action agent (also, Zero-Shot agent,
ZERO_SHOT_REACT_DESCRIPTION), which is the default setting when you
create an agent.

As mentioned, plans can also be made ahead of any actions. This strategy
(in LangChain, called the plan-and-execute agent) is illustrated in the
diagram here (source – https://arxiv.org/abs/2305.18323;
Binfeng Xu and others, May 2023):

Figure 4.7: Decoupling reasoning from observations

The Planner (an LLM), which can be fine-tuned for planning and tool
usage, produces a list of plans (P) and calls a worker (in LangChain, the
agent) to gather evidence (E) by using tools. P and E are combined with the
task and then fed into the Solver (an LLM) for the final answer. We can
write a pseudo algorithm like this:

1. Plan out all the steps (Planner).

https://arxiv.org/abs/2305.18323

2. For each step, determine the proper tools to accomplish the step and
execute.

The Planner and the Solver can be distinct language models. This opens
the possibility of using smaller, specialized models for Planner and Solver,
and using fewer tokens for each of the calls.

We can implement plan-and-solve in our research app; let’s do it!

First, let’s add a strategy variable to the load_agent() function. It can take
two values, either plan-and-solve or zero-shot-react . For zero-shot-
react , the logic stays the same. For plan-and-solve , we’ll define a planner
and an executor, which we’ll use to create a PlanAndExecute agent
executor:

from typing import Literal
from langchain.agents import initialize_agent, load_tools, Agen
from langchain.chains.base import Chain
from langchain.chat_models import ChatOpenAI
from langchain_experimental.plan_and_execute import (
 load_chat_planner, load_agent_executor, PlanAndExecute
)
ReasoningStrategies = Literal["zero-shot-react", "plan-and-solv
def load_agent(
 tool_names: list[str],
 strategy: ReasoningStrategies = "zero-shot-react"
) -> Chain:
 llm = ChatOpenAI(temperature=0, streaming=True)
 tools = load_tools(
 tool_names=tool_names,
 llm=llm
)
 if strategy == "plan-and-solve":
 planner = load_chat_planner(llm)
 executor = load_agent_executor(llm, tools, verbose=True
 return PlanAndExecute(planner=planner, executor=executo
 return initialize_agent(

 tools=tools, llm=llm, agent=AgentType.ZERO_SHOT_REACT_D
)

Please refer to the version on GitHub (within the question_answering
package) for the full version. For example, we might come across output
parsing errors. We can handle these by setting handle_parsing_errors in
the initialize_agent() method.

Let’s define a new variable that’s set through a radio button in Streamlit.
We’ll pass this variable over to the load_agent() function:

strategy = st.radio(
 "Reasoning strategy",
 ("plan-and-solve", "zero-shot-react")
)

You might have noticed that the load_agent() method takes a list of
strings, tool_names . This can be chosen in the user interface (UI) as well:

tool_names = st.multiselect(
 'Which tools do you want to use?',
 [
 "google-search", "ddg-search", "wolfram-alpha", "arxiv"
 "wikipedia", "python_repl", "pal-math", "llm-math"
],
 ["ddg-search", "wolfram-alpha", "wikipedia"])

Finally, still in the app, the agent is loaded like this:

agent_chain = load_agent(tool_names=tool_names, strategy=strate

We can execute this agent with Streamlit. We should run the following
command in our terminal:

PYTHONPATH=. streamlit run question_answering/app.py

We should see how Streamlit starts up our application. If we open our
browser on the indicated URL (by default, http://localhost:8501/), we
should see the UI here:

Figure 4.8: Implementing plan-and-execute in our research app

Please have a look at the app in your browser and see the different steps for
the question “What is a plan-and-solve agent in the context of LLM?”.

The steps look as follows – please note that the result might not be 100%
accurate but this is what the agent comes up with:

1. Define LLMs: LLMs are AI models that are trained on vast amounts
of text data and can generate human-like text based on the input they
receive.

2. Understand the concept of a plan in the context of LLMs: In the
context of large language models, a plan refers to a structured outline
or set of steps that the model generates to solve a problem or answer a
question.

3. Understand the concept of a solve agent in the context of LLMs: A
solve agent is an LLM that works as an agent. It is responsible for
generating plans to solve problems or answer questions.

4. Recognize the importance of plans and solve agents in LLMs:
Plans and solve agents help organize the model’s thinking process and
provide a structured approach to problem-solving or question-
answering tasks.

5. Given the above steps, respond to the user’s original question: In
the context of large language models, a plan is a structured outline or
set of steps generated by a solve agent to solve a problem or answer a
question. A solve agent is a component of a large language model that
is responsible for generating these plans.

Accordingly, the first step is to perform a look-up of LLMs:

Action:
{
"action": "Wikipedia",
"action_input": "large language models"
}

We didn’t discuss another aspect of question answering, which is the
prompting strategy used in these steps. We’ll go into detail about prompting

in Chapter 8, Customizing LLMs and Their Output, where we talk about
prompting techniques, but very quickly, here’s an overview:

Few-shot chain-of-thought (CoT) prompting demonstrates step-by-
step reasoning to guide the LLM through a thought process.
Zero-shot CoT prompting elicits reasoning steps without examples by
simply instructing the LLM to “think step by step.”
CoT prompting aims to aid understanding of reasoning processes
through examples.

Additionally, while in plan-and-solve, complex tasks are broken down into
subtask plans that are executed sequentially, this can be extended with more
detailed instructions to improve reasoning quality, like emphasizing key
variables and common sense.

You can find a very advanced example of augmented information retrieval
with LangChain in the BlockAGI project, which is inspired by BabyAGI
and AutoGPT, at https://github.com/blockpipe/BlockAGI.

This concludes our introduction to reasoning strategies. All strategies have
their problems, which can manifest as calculation errors, missing-step
errors, and semantic misunderstandings. However, they help improve the
quality of generated reasoning steps, increase accuracy in problem-solving
tasks, and enhance LLMs’ ability to handle various types of reasoning
problems.

Summary

In this chapter, we first talked about the problem of hallucinations and
automatic fact-checking, and how to make LLMs more reliable. We
implemented a few simple approaches that help to make LLM outputs more

https://github.com/blockpipe/BlockAGI

accurate. We then looked at and implemented prompting strategies to break
down and summarize documents. This can be immensely helpful for
digesting large research articles or analyses. Once we get into making a lot
of chained calls to LLMs, this can mean we incur a lot of costs. Therefore, I
dedicated a subsection to token usage.

The OpenAI API implements functions, which we can use, among other
things, for information extraction in documents. We’ve implemented a
remarkably simple version of a CV parser as an example of this
functionality that indicates how this could be applied. Tools and function
calling are not unique to OpenAI, however. The evolution of instruction
tuning, function calling, and tool usage enables models to move beyond
freeform text generation into robustly automating tasks by interacting with
real systems. The approaches unlock more capable, reliable AI assistants.
With LangChain, we can implement different agents that call tools. We’ve
implemented an app with Streamlit that can help answer research questions
by relying on external tools such as search engines or Wikipedia. Unlike
Retrieval augmented generation (RAG), which we’ll discuss in the next
chapter and which uses vector search for semantic similarity, tools provide
contextual augmentation by directly querying databases, APIs, and other
structured external sources. The factual information retrieved by tools
supplements the chatbot’s internal context.

Finally, we looked at different strategies employed by the agents to make
decisions. The main distinction is the point of decision-making. We
implemented a plan-and-solve and a zero-shot agent in a Streamlit app.

While this chapter introduced many promising directions for developing
capable and trustworthy LLMs, subsequent chapters will expand on the
techniques developed here. For example, we’ll discuss reasoning with

agents in much more detail in Chapter 6, Developing Software with
Generative AI, and Chapter 7, LLMs for Data Science, and provide an
overview of prompting techniques in Chapter 8, Customizing LLMs and
Their Output.

Questions

Please have a look to see if you can come up with the answers to these
questions from memory. I’d recommend you go back to the corresponding
sections of this chapter if you are unsure about any of them:

1. How can we summarize documents with LLMs?
2. What is the chain of density?
3. What are LangChain decorators and what’s the LangChain Expression

Language?
4. What is map-reduce in LangChain?
5. How can we count the tokens we are using (and why should we)?
6. How is instruction tuning related to function calling and tool usage?
7. Give some examples of tools that are available in LangChain.
8. Please define two agent paradigms.
9. What is Streamlit and why do we want to use it?

10. How does automated fact-checking work?

Join our community on

Discord

Join our community’s Discord space for discussions with the authors and
other readers:

https://packt.link/lang

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Chapter_04.xhtml
https://oceanofpdf.com/

5

Building a Chatbot like ChatGPT

Chatbots powered by LLMs have demonstrated impressive fluency in conversational tasks like
customer service. However, their lack of world knowledge limits their usefulness for domain-
specific question answering. In this chapter, we explore how to overcome these limitations
through Retrieval-Augmented Generation (RAG). RAG enhances chatbots by grounding their
responses in external evidence sources, leading to more accurate and informative answers. This is
achieved by retrieving relevant passages from corpora to condition the language model’s
generation process. The key steps involve encoding corpora into vector embeddings to enable
rapid semantic search and integrating retrieval results into the chatbot’s prompt.

We will also provide foundations for representing documents as vectors, indexing methods for
efficient similarity lookups, and vector databases for managing embeddings. Building on these
core techniques, we will demonstrate practical RAG implementations using popular libraries like
Milvus and Pinecone. By walking through end-to-end examples, we will showcase how RAG can
significantly improve chatbots’ reasoning and factual correctness. Finally, we discuss another
important topic from the reputational and legal perspective: moderation. LangChain allows you to
pass any text through a moderation chain to check whether it contains harmful content.

Throughout the chapter, we’ll work on a chatbot implementation with an interface in Streamlit
that you can find in the chat_with_retrieval directory in the GitHub repository for the book
(https://github.com/benman1/generative_ai_with_langchain).

In a nutshell, the main topics are:

What is a chatbot?
Understanding retrieval and vectors
Loading and retrieving in LangChain
Implementing a chatbot
Moderating responses

We’ll begin the chapter by introducing chatbots and the state-of-the-art technology behind them.

https://github.com/benman1/generative_ai_with_langchain

What is a chatbot?

Chatbots are AI programs that simulate conversational interactions with users via text or voice.
Early chatbots, like ELIZA (1966) and PARRY (1972), used pattern matching. Recent advances,
like LLMs, allow more natural conversations, as seen in systems like ChatGPT (2022). However,
challenges remain in achieving human-level discourse.

The Turing test, proposed in 1950, established a landmark for assessing intelligence by a
computer’s ability to impersonate human conversation. Despite limitations, it established a
philosophical foundation for AI. However, early systems like ELIZA passed the test using
scripted responses without true understanding, calling into question the test’s validity as an
evaluation of AI. The test also faced criticism for relying on deceit and for limitations in its
format that constrained the complexity of questioning. Philosophers like John Searle argued
symbolic manipulation alone did not equate to human-level intelligence. Still, the Turing test
influenced the conversation on AI capabilities.

Recent chatbots with more advanced natural language processing can better simulate
conversational depth. IBM Watson (2011) answered complex questions to beat Jeopardy!
champions. Siri (2011), as a voice-based assistant, pioneered integrating chatbots into everyday
devices. Systems like Google Duplex (2018) book appointments via phone conversations.

The advent of LLMs like GPT-3 enabled more human-like chatbot systems such as ChatGPT
(2022). Yet their abilities remain tightly constrained. True human discourse requires complex
reasoning, pragmatics, common sense, and broad contextual knowledge.

Today’s benchmarks thus focus more on testing specific task performance to probe the limits of
LLMs like GPT-4. While ChatGPT displays remarkable coherence, its lack of grounding can
result in plausible but incorrect responses. Understanding these boundaries is crucial for safe,
beneficial applications. The goal is no longer merely imitation but developing useful AI alongside
a deeper comprehension of the inner workings of adaptive learning systems.

Chatbots analyze user input, understand the intent behind it, and generate appropriate responses.
They can be designed to work with text-based messaging platforms or voice-based applications.

Some use cases for chatbots in customer service include providing 24/7 support, handling
frequently asked questions, assisting with product recommendations, processing orders and
payments, and resolving simple customer issues.

Some more use cases of chatbots include:

Appointment scheduling: Chatbots can help users schedule appointments, book
reservations, and manage their calendars.

Information retrieval: Chatbots can provide users with specific information, such as
weather updates, news articles, or stock prices.
Virtual assistants: Chatbots can act as personal assistants, helping users with tasks like
setting reminders, sending messages, or making phone calls.
Language learning: Chatbots can assist in language learning by providing interactive
conversations and language practice.
Mental health support: Chatbots can offer emotional support, provide resources, and
engage in therapeutic conversations for mental health purposes.
Education: In educational settings, virtual assistants are being explored as virtual tutors,
helping students learn and assess their knowledge, answer questions, and deliver
personalized learning experiences.
HR and recruitment: Chatbots can assist in the recruitment process by screening
candidates, scheduling interviews, and providing information about job openings.
Entertainment: Chatbots can engage users in interactive games, quizzes, and storytelling
experiences.
Law: Chatbots can be used to provide basic legal information, answer common legal
questions, assist with legal research, and help users navigate legal processes. They can also
help with document preparation, such as drafting contracts or creating legal forms.
Medicine: Chatbots can assist with symptom checking, provide basic medical advice, and
offer mental health support. They can improve clinical decision-making by providing
relevant information and recommendations to healthcare professionals.

These are just a few examples, and the use cases of chatbots continue to expand across various
industries and domains. Chat technology in any field can make information more accessible and
provide initial support to individuals seeking assistance. But their inability to reason or analyze
limits roles requiring true intelligence. With responsible development, chatbots hold promise for
intuitive interfaces in customer service and other domains, even if human-level language mastery
remains elusive. Ongoing research aims to develop safe, useful chatbot capabilities.

There is an important distinction between chatbots that merely respond to explicit user prompts
versus those with the more advanced ability to proactively initiate conversation and provide
information without direct prompting. Intentional chatbots are designed to directly understand and
fulfill specific user requests and intentions. However, proactive chatbots aim to anticipate needs
and preferences based on prior interactions and contextual cues, taking the conversational
initiative to address potential user questions preemptively.

While responsive intentional chatbots can effectively fulfill precise user directions, proactive
abilities hold the promise of more natural, efficient human-AI interaction by building loyalty and

trust through anticipatory service. However, mastering context and reasoning remains an AI
challenge to create proactive yet controllable assistants. Current research is advancing chatbot
abilities on both fronts, with the goal of balancing proactive dialog with responsiveness to user
intent in fluid, purposeful conversation.

Understanding retrieval and vectors

Retrieval-augmented generation (RAG) is a technique that enhances text generation by
retrieving and incorporating external knowledge. This grounds the output in factual information
rather than relying solely on the knowledge that is encoded in the language model’s parameters.
Retrieval-Augmented Language Models (RALMs) specifically refer to retrieval-augmented
language models that integrate retrieval into the training and inference process.

Traditional language models generate text autoregressively based only on the prompt. RALMs
augment this by first retrieving relevant context from external corpora using semantic search
algorithms. Semantic search typically involves indexing documents into vector embeddings,
allowing fast similarity lookups via approximate nearest neighbor search.

The retrieved evidence then conditions the language model to produce more accurate,
contextually relevant text. This cycle repeats, with RALMs formulating queries dynamically,
retrieving information on demand during generation. Active RALMs interleave retrieval and text
creation, regenerating uncertain parts by fetching clarifying knowledge.

Overall, RAG and RALMs overcome the limits of language models’ memory by grounding
responses in external information. As we’ll explore more later, efficient storage and indexing of
vector embeddings is crucial for enabling real-time semantic search over large document
collections.

By incorporating outside knowledge, RALMs generate text that is more useful, nuanced, and
factually correct. Their capabilities continue advancing through optimizations in indexing
methods, reasoning about retrieval timing, and fusing internal and external contexts.

By grounding LLMs with use-case-specific information through RAG, the quality and accuracy
of responses are improved. Through retrieval of relevant data, RAG helps in reducing
hallucination responses from LLMs. For example, an LLM used in a healthcare application could
retrieve relevant medical information from external sources such as medical literature or
databases during inference. This retrieved data can then be incorporated into the context to
enhance the generated responses and ensure they are accurate and aligned with domain-specific
knowledge.

Since we are talking about vector storage, we need to discuss vector search, which is a technique
used to search and retrieve vectors (or embeddings) based on their similarity to a query vector. It
is commonly used in applications such as recommendation systems, image and text search, and
anomaly detection. We’ll start with the fundamentals of embeddings now. Once you understand
embeddings, you’ll be able to build everything from search engines to chatbots.

Embeddings

An embedding is a numerical representation of content in a way that machines can process and
understand. The essence of the process is to convert an object such as an image or some text into
a vector that encapsulates its semantic content while discarding irrelevant details as much as
possible. An embedding takes a piece of content, such as a word, sentence, or image, and maps it
into a multi-dimensional vector space. The distance between two embeddings indicates the
semantic similarity between the corresponding concepts (the original content).

Embeddings are representations of data objects generated by machine learning
models to represent. They can represent words or sentences as numerical vectors
(lists of float numbers). As for the OpenAI language embedding models, the
embedding is a vector of 1,536 floating point numbers that represent the text.
These numbers are derived from a sophisticated language model that captures
semantic content.

As an example, let’s say we have the words cat and dog – these could be
represented numerically in a space together with all other words in the vocabulary.
If the space is 3-dimensional, these could be vectors such as [0.5, 0.2, -0.1] for cat
and [0.8, -0.3, 0.6] for dog. These vectors encode information about the
relationships of these concepts with other words. Roughly speaking, we would
expect the concepts of cat and dog to be closer (more similar) to the concept of
animal than to the concept of computer or embedding.

Embeddings can be created using different methods. For texts, one simple method is the bag-of-
words approach, where each word is represented by a count of how many times it appears in a
text. This approach, which in the scikit-learn library is implemented as CountVectorizer , was
popular until word2vec came about. Word2vec, which – roughly speaking – learns embeddings
by predicting the words in a sentence based on other surrounding words ignoring the word order
in a linear model.

We can perform simple vector arithmetic with these vectors, for example, the vector for king
minus man plus the vector for woman gives us a vector that comes close to queen. The general
idea of embeddings is illustrated in the following figure (source: “Analogies Explained: Towards
Understanding Word Embeddings” by Carl Allen and Timothy Hospedales, 2019;
https://arxiv.org/abs/1901.09813):

Figure 5.1: Word2vec word embeddings in a 3D space

As for images, embeddings could come from feature extraction stages such as edge detection,
texture analysis, and color composition. These features can be extracted over different window
sizes to make the representations both scale-invariant and shift-invariant (scale-space
representations). Nowadays, often, convolutional neural networks (CNNs) are pre-trained on
large datasets (like ImageNet) to learn a good representation of the image’s properties. Since
convolutional layers apply a series of filters (or kernels) on the input image to produce a feature
map, conceptually this is like scale-space. When a pre-trained CNN then runs over a new image,
it can output an embedding vector.

Today, for most domains including texts and images, embeddings usually come from
transformer-based models, which consider the context and order of the words in a sentence and
the paragraph. Based on the model architecture, most importantly the number of parameters, these
models can capture extraordinarily complex relationships. All these models are trained on large
datasets to establish the concepts and their relationships.

https://arxiv.org/abs/1901.09813

These embeddings can be used in various tasks. By representing data objects as numerical
vectors, we can perform mathematical operations on them and measure their similarity or use
them as input for other machine learning models. By calculating distances between embeddings,
we can perform tasks like search and similarity scoring, or classify objects, for example by topic
or category. For example, we could be performing a simple sentiment classifier by checking if
embeddings of product reviews are closer to the concept of positive or negative.

In LangChain, you can obtain an embedding by using the embed_query() method from any
embedding class, for example, from the the OpenAIEmbeddings class. Here is an example code
snippet:

from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text = "This is a sample query."
query_result = embeddings.embed_query(text)
print(query_result)
print(len(query_result))

This code passes a single string input to the embed_query method and retrieves the corresponding
text embedding. The result is stored in the query_result variable. The length of the embedding
(the number of dimensions) can be obtained using the len() function. I am assuming you have
set the API key as an environment variable, as recommended in Chapter 3, Getting Started with
LangChain.

You can also obtain embeddings for multiple document inputs using the embed_documents()
method. Here is an example:

from langchain.embeddings.openai import OpenAIEmbeddings
words = ["cat", "dog", "computer", "animal"]
embeddings = OpenAIEmbeddings()
doc_vectors = embeddings.embed_documents(words)

In this case, the embed_documents() method is used to retrieve embeddings for multiple text
inputs. The result is stored in the doc_vectors variable. We could have retrieved embeddings for
long documents – instead, we’ve retrieved the vectors only for each single word.

We can also do arithmetic between these embeddings; for example, we can calculate distances
between them:

from scipy.spatial.distance import pdist, squareform
import numpy as np
import pandas as pd

X = np.array(doc_vectors)
dists = squareform(pdist(X))

This gives us the Euclidean distances between our words as a square matrix. Let’s plot them:

import pandas as pd
df = pd.DataFrame(
 data=dists,
 index=words,
 columns=words
)
df.style.background_gradient(cmap='coolwarm')

The distance plot should look like this:

Figure 5.2: Euclidean distances between embeddings of the words cat, dog, computer, and animal

We can confirm: a cat and a dog are indeed closer to an animal than to a computer. There could be
many questions here, for example, if a dog is more an animal than a cat, or why a dog and a cat
are only a little more distant from a computer than from an animal. Although these questions can
be important in certain applications, let’s bear in mind that this is a simple example.

In these examples, we’ve used OpenAI embeddings – in the examples further on, we’ll use
embeddings from models served by Hugging Face. There are a few integrations and tools in
LangChain that can help with this process, some of which we’ll encounter later on in this chapter.

Additionally, LangChain provides a FakeEmbeddings class that can be used to test your pipeline
without making actual calls to the embedding providers.

In the context of this chapter, we’ll use them for retrieval of related information (semantic
search). However, we still need to talk about the integration of these embeddings into apps and
broader systems, and this is where vector storage comes in.

Vector storage

As mentioned, in vector search, each data point is represented as a vector in a high-dimensional
space. The vectors capture the features or characteristics of the data points. The goal is to find the
most similar vectors to a given query vector.

In vector search, every data object in a dataset is assigned a vector embedding. These embeddings
are arrays of numbers that can be used as coordinates in a high-dimensional space. The distance
between vectors can be computed using distance metrics like cosine similarity or Euclidean
distance. To perform a vector search, the query vector (representing the search query) is compared
to every vector in the collection. The distance between the query vector and each vector in the
collection is calculated, and objects with smaller distances are considered more similar.

To perform vector search efficiently, vector storage mechanisms are used such as vector
databases.

Vector search refers to the process of searching for similar vectors among other
stored vectors, for example, in a vector database, based on their similarity to a
given query vector. Vector search is commonly used in various applications such
as recommendation systems, image and text search, and similarity-based retrieval.
The goal of vector search is to efficiently and accurately retrieve vectors that are
most similar to the query vector, typically using similarity measures such as the
dot product or cosine similarity.

Vector storage refers to the mechanism used to store vector embeddings and is also relevant to
how those vector embeddings can be retrieved. Vector storage can be a standalone solution that is
specifically designed to store and retrieve vector embeddings efficiently. On the other hand,
vector databases are purpose-built to manage vector embeddings and provide several advantages
over using standalone vector indices like Faiss.

Let’s dive into a few of these concepts a bit more. There are three levels to this:

1. Indexing organizes vectors to optimize retrieval, structuring them so that vectors can be
retrieved quickly. There are different algorithms like k-d trees or Annoy for this.

2. Vector libraries provide functions for vector operations like dot product and vector
indexing.

3. Vector databases like Milvus or Pinecone are designed to store, manage, and retrieve large
sets of vectors. They use indexing mechanisms to facilitate efficient similarity searches on
these vectors.

These components work together for the creation, manipulation, storage, and efficient retrieval of
vector embeddings. Let’s look at these in turn to understand the fundamentals of working with
embeddings. Understanding these fundamentals should make it intuitive to work with RAG.

Vector indexing

Indexing in the context of vector embeddings is a method of organizing data to optimize its
retrieval and/or storage. It’s similar to the concept in traditional database systems, where indexing
allows quicker access to data records. For vector embeddings, indexing aims to structure the
vectors – roughly speaking – so that similar vectors are stored next to each other, enabling fast
proximity or similarity searches.

A typical algorithm applied in this context is k-dimensional trees (k-d trees), but many others,
like ball trees, Annoy, and Faiss, are often implemented, especially for high-dimensional vectors,
which traditional methods can struggle with.

There are several other types of algorithms commonly used for similarity search indexing. Some
of them include:

Product quantization (PQ): PQ is a technique that divides the vector space into smaller
subspaces and quantizes each subspace separately. This reduces the dimensionality of the
vectors and allows for efficient storage and search. PQ is known for its fast search speed but
may sacrifice some accuracy. Examples of PQ are k-d trees and ball trees. In k-d trees, a
binary tree structure is built up that partitions the data points based on their feature values. It
is efficient for low-dimensional data but becomes less effective as the dimensionality
increases. In ball trees, a tree structure that partitions the data points into nested
hyperspheres. It is suitable for high-dimensional data but can be slower than k-d trees for
low-dimensional data.
Locality sensitive hashing (LSH): This is a hashing-based method that maps similar data
points to the same hash buckets. It is efficient for high-dimensional data but may have a
higher probability of false positives and false negatives. The Annoy (Approximate Nearest
Neighbors Oh Yeah) algorithm is a popular LSH algorithm that uses random projection
trees to index vectors. It constructs a binary tree structure where each node represents a
random hyperplane. Annoy is simple to use and provides fast approximate nearest neighbor
search.
Hierarchical navigable small world (HNSW): HNSW is a graph-based indexing algorithm
that constructs a hierarchical graph structure to organize the vectors. It uses a combination of
randomization and greedy search to build a navigable network, allowing for efficient nearest-
neighbor search. HNSW is known for its high search accuracy and scalability.

Apart from HNSW and KNN, there are other graph-based methods, like Graph Neural
Networks (GNNs) and Graph Convolutional Networks (GCNs), that leverage graph
structures for similarity search.

These indexing algorithms have different trade-offs in terms of search speed, accuracy, and
memory usage. The choice of algorithm depends on the specific requirements of the application
and the characteristics of the vector data.

Vector libraries

Vector libraries, like Facebook (Meta) Faiss or Spotify Annoy, provide functionality for working
with vector data. In the context of vector search, a vector library is specifically designed to store
and perform similarity search on vector embeddings. These libraries use the Approximate
Nearest Neighbor (ANN) algorithm to efficiently search through vectors and find the most
similar ones. They typically offer different implementations of the ANN algorithm, such as
clustering or tree-based methods, and allow users to perform vector similarity search for various
applications.

Here’s a quick overview of some open-source libraries for vector storage that shows their
popularity in terms of GitHub stars over time (source: star-history.com):

Figure 5.3: Star history for several popular open-source vector libraries

You can see that Faiss has been starred a lot by GitHub users. Annoy comes second. Others have
not found the same popularity yet.

Let’s quickly go through these:

https://star-history.com/

Faiss (Facebook AI Similarity Search) is a library developed by Meta (previously
Facebook) that provides efficient similarity search and clustering of dense vectors. It offers
various indexing algorithms, including PQ, LSH, and HNSW. Faiss is widely used for large-
scale vector search tasks and supports both CPU and GPU acceleration.
Annoy is a C++ library for approximate nearest neighbor search in high-dimensional spaces
maintained and developed by Spotify implementing the Annoy algorithm. It is designed to be
efficient and scalable, making it suitable for large-scale vector data. It works with a forest of
random projection trees.
hnswlib is a C++ library for approximate nearest-neighbor search using the HNSW
algorithm. It provides fast and memory-efficient indexing and search capabilities for high-
dimensional vector data.
nmslib (Non-Metric Space Library) is an open-source library that provides efficient
similarity search in non-metric spaces. It supports various indexing algorithms like HNSW,
SW-graph, and SPTAG.
SPTAG by Microsoft implements a distributed ANN. It comes with a k-d tree and relative
neighborhood graph (SPTAG-KDT), as well as a balanced k-means tree and relative
neighborhood graph (SPTAG-BKT).

Both nmslib and hnswlib are maintained by Leo Boytsov, who works as a senior research scientist
at Amazon, and Yury Malkov. There are a lot more libraries. You can see an overview at
https://github.com/erikbern/ann-benchmarks

Vector databases

A vector database is designed to handle vector embeddings, making it easier to search and query
data objects. It offers additional features such as data management, metadata storage and filtering,
and scalability. While vector storage focuses solely on storing and retrieving vector embeddings, a
vector database provides a more comprehensive solution for managing and querying vector data.
Vector databases can be particularly useful for applications that involve copious amounts of data
and require flexible and efficient search capabilities across several types of vectorized data, such
as text, images, audio, video, and more.

Vector databases can be used to store and serve machine learning models and their
corresponding embeddings. The primary application is similarity search (also semantic search),
where we can efficiently search through large volumes of text, images, or videos, identifying
objects matching the query based on the vector representation. This is particularly useful in
applications such as document search, reverse image search, and recommendation systems.

https://github.com/erikbern/ann-benchmarks

Other use cases for vector databases are continually expanding as the technology evolves;
however, some common use cases for vector databases include:

Anomaly detection: Vector databases can be used to detect anomalies in large datasets by
comparing the vector embeddings of data points. This can be valuable in fraud detection,
network security, or monitoring systems where identifying unusual patterns or behaviors is
crucial.
Personalization: Vector databases can be used to create personalized recommendation
systems by finding similar vectors based on user preferences or behavior.
Natural Language Processing (NLP): Vector databases are widely used in NLP tasks such
as sentiment analysis, text classification, and semantic search. By representing text as vector
embeddings, it becomes easier to compare and analyze textual data.

These databases are popular because they are optimized for scalability and representing and
retrieving data in high-dimensional vector spaces. Traditional databases are not designed to
efficiently handle large-dimensional vectors, such as those used to represent images or text
embeddings.

The characteristics of vector databases include:

Efficient retrieval of similar vectors: Vector databases excel at finding close embeddings or
similar points in a high-dimensional space. This makes them ideal for tasks like reverse
image search or similarity-based recommendations.
Specialized for specific tasks: Vector databases are designed to perform a specific task,
such as finding close embeddings. They are not general-purpose databases and are tailored to
handle substantial amounts of vector data efficiently.
Support for high-dimensional spaces: Vector databases can handle vectors with thousands
of dimensions, allowing for complex representations of data. This is crucial for tasks like
natural language processing or image recognition.
Enable advanced search capabilities: With vector databases, it becomes possible to build
powerful search engines that can search for similar vectors or embeddings. This opens
possibilities for applications like content recommendation systems or semantic search.

Overall, vector databases offer a specialized and efficient solution for handling large-dimensional
vector data, enabling tasks like similarity search and advanced search capabilities.

The market for open-source software and databases is currently thriving due to several factors.
Firstly, artificial intelligence (AI) and data management have become crucial for businesses,
leading to a high demand for advanced database solutions.

In the database market, there is a history of new types of databases emerging and creating new
market categories. These market creators often dominate the industry, attracting significant
investments from venture capitalists (VCs). For example, MongoDB, Cockroach, Neo4J, and
Influx are all examples of successful companies that introduced innovative database technologies
and achieved substantial market share. The popular Postgres has an extension for efficient vector
search: pg_embedding . HNSW provides a faster and more efficient alternative to the pgvector
extension with IVFFlat indexing.

Some examples of vector databases are listed in Table 5.1. I took the liberty of highlighting for
each search engine the following perspectives:

Value proposition: What is the unique feature that sets this vector search engine apart from
others?
Business model: The general type of the engine, whether it’s a vector database, big data
platform, or managed/self-hosted.
Indexing: The algorithmic approach to similarity/vector search taken by this search engine
and its unique capabilities.
License: Whether it is open- or closed-source.

Database
provider

Description Business
model

First
released

License Indexing Organization

Chroma Commercial
open-source
embedding
store

(Partly
open)
SaaS

2022 Apache-
2.0

HNSW Chroma Inc

Qdrant Managed/self-
hosted vector
search engine
and database
with extended
filtering
support

(Partly
open)
SaaS

2021 Apache
2.0

HNSW Qdrant
Solutions
GmbH

Milvus Vector
database built
for scalable

(Partly
open)
SaaS

2019 BSD IVF,
HNSW,
PQ, and
more

Zilliz

similarity
search

Weaviate Cloud-native
vector
database that
stores both
objects and
vectors

Open
SaaS

Started in
2018 as a
traditional
graph
database,
first
released in
2019

BSD Custom
HNSW
algorithm
that
supports
CRUD

SeMI
Technologies

Pinecone Fast and
scalable
applications
using
embeddings
from AI
models

SaaS First
released in
2019

Proprietary Built on
top of
Faiss

Pinecone
Systems Inc

Vespa Commercial
open-source
vector
database that
supports
vector search,
lexical search,
and search

Open
SaaS

Originally a
web search
engine
(alltheweb),
acquired by
Yahoo! in
2003, and
later
developed
into and
open-
sourced as
Vespa in
2017

Apache
2.0

HNSW,
BM25

Yahoo!

Marqo Cloud-native
commercial
open-source
search and

Open
SaaS

2022 Apache
2.0

HNSW S2Search
Australia Pty
Ltd

analytics
engine

Table 5.1: Vector databases

In the preceding table, I’ve left out other aspects such as architecture, support for sharding, and
in-memory processing. There are many vector database providers. I’ve omitted many solutions,
such as FaissDB and Hasty.ai, and focused on a few ones that are integrated into LangChain.

For the open-source databases, the GitHub star histories give a good idea of their popularity and
traction. Here’s the plot over time (source: star-history.com):

Figure 5.4: Star history of open-source vector databases on GitHub

You can see that milvus is immensely popular; however, other libraries such as qdrant, weviate,
and chroma have been catching up.

In LangChain, vector storage can be implemented using the vectorstores module. This module
provides various classes and methods for storing and querying vectors. Let’s see an example of a
vector store implementation in LangChain!

Chroma

This vector store is optimized for storing and querying vectors using Chroma as a backend.
Chroma takes over for encoding and comparing vectors based on their angular similarity.

To use Chroma in LangChain, you need to follow these steps:

1. Import the necessary modules:

https://star-history.com/

from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings

2. Create an instance of Chroma and provide the documents (splits) and the embedding
method:

vectorstore = Chroma.from_documents(documents=docs, embedding=OpenAIEmbeddings

The documents (or splits, as seen in Chapter 5, Building a Chatbot Like
ChatGPT) will be embedded and stored in the Chroma vector database. We’ll
discuss document loaders in another section of this chapter. However, for sake of
completeness, you can get the docs argument for the preceding chroma vector
store like this:

from langchain.document_loaders import ArxivLoader
from langchain.text_splitter import CharacterTextSplitter
loader = ArxivLoader(query="2310.06825")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=
docs = text_splitter.split_documents(documents)

This will load and chunk up the paper about Mistal 7B. Please note that the
download will be a PDF, and you’ll need to have the pymupdf library installed.

3. We can query the vector store to retrieve similar vectors:

similar_vectors = vector_store.query(query_vector, k)

Here, query_vector is the vector you want to find similar vectors to, and k is the number of
similar vectors you want to retrieve.

In this section, we’ve learned a lot of the basics of embeddings and vector stores. We’ve also seen
how to work with embeddings and documents in vector stores and vector databases. In practice,
there are two building blocks for us to pick up if we want to build a chatbot, most importantly
document loaders and retrievers, both of which we’ll look at now.

Loading and retrieving in LangChain

LangChain implements a toolchain of different building blocks for building retrieval systems. In
this section, we’ll look at how we can put them together in a pipeline for building a chatbot with
RAG. This includes data loaders, document transformers, embedding models, vector stores, and
retrievers.

The relationship between them is illustrated in the diagram here (source: LangChain
documentation):

Figure 5.5: Vector stores and data loaders

In LangChain, we first load documents through data loaders. Then we can transform them and
pass these documents to a vector store as embedding. We can then query the vector store or a
retriever associated with the vector store. Retrievers in LangChain can wrap the loading and
vector storage into a single step. We’ll mostly skip transformations in this chapter; however,
you’ll find explanations with examples of data loaders, embeddings, storage mechanisms, and
retrievers.

In LangChain, we can load our documents from many sources and in a bunch of formats through
the integrated document loaders. You can use the LangChain integration hub to browse and select
the appropriate loader for your data source. Once you have selected the loader, you can load the
document using the specified loader.

Let’s look at document loaders in LangChain! In the actual pipeline of implementing RAG, these
come as the first step.

Document loaders

Document loaders are used to load data from a source as Document objects, which consist of text
and associated metadata. There are several types of integrations available, such as document
loaders for loading a simple .txt file (TextLoader), loading the text contents of a web page
(WebBaseLoader), loading articles from Arxiv (ArxivLoader), or loading a transcript of a YouTube

video (YoutubeLoader). For webpages, the Diffbot integration gives a clean extraction of the
content. Other integrations exist for images such as providing image captions
(ImageCaptionLoader).

Document loaders have a load() method that loads data from the configured source and returns it
as documents. They may also have a lazy_load() method for loading data into memory as and
when they are needed.

Here is an example of a document loader for loading data from a text file:

from langchain.document_loaders import TextLoader
loader = TextLoader(file_path="path/to/file.txt")
documents = loader.load()

The documents variable will contain the loaded documents, which can be accessed for further
processing. Each document consists of page_content (the text content of the document) and
metadata (associated metadata such as the source URL or title).

Similarly, we can load documents from Wikipedia:

from langchain.document_loaders import WikipediaLoader
loader = WikipediaLoader("LangChain")
documents = loader.load()

It’s important to note that the specific implementation of document loaders may vary depending
on the programming language or framework being used.

In LangChain, vector retrieval in agents or chains is done via retrievers, which access vector
storage. Let’s now see how retrievers work.

Retrievers in LangChain

Retrievers in LangChain are a type of component that is used to search and retrieve information
from a given index stored in a vector store as a backend, such as Chroma, to index and search
embeddings. Retrievers play a crucial role in answering questions over documents, as they are
responsible for retrieving relevant information based on the given query.

Here are a few examples of retrievers:

BM25 retriever: This retriever uses the BM25 algorithm to rank documents based on their
relevance to a given query. It is a popular information retrieval algorithm that considers term
frequency and document length.

TF-IDF retriever: This retriever uses the TF-IDF (Term Frequency-Inverse Document
Frequency) algorithm to rank documents based on the importance of terms in the document
collection. It assigns higher weights to terms that are rare in the collection but occur
frequently in a specific document.
Dense retriever: This retriever uses dense embeddings to retrieve documents. It encodes
documents and queries into dense vectors, and calculates the similarity between them using
cosine similarity or other distance metrics.
kNN retriever: This utilizes the well-known k-nearest neighbors algorithm to retrieve
relevant documents based on their similarity to a given query.

These are just a few examples of retrievers available in LangChain. Each retriever has its own
strengths and weaknesses, and the choice of retriever depends on the specific use case and
requirements. For example, the purpose of an Arxiv retriever is to retrieve scientific articles
from the Arxiv.org archive. It is a tool that allows users to search for and download scholarly
articles in various fields such as physics, mathematics, computer science, and more.

The functionality of an Arxiv retriever includes specifying the maximum number of documents to
be downloaded, retrieving relevant documents based on a query, and accessing the metadata
information of the retrieved documents.

A Wikipedia retriever allows users to retrieve Wikipedia pages or documents from the website
Wikipedia. The purpose of a Wikipedia retriever is to provide easy access to the vast amount of
information available on Wikipedia and enable users to extract specific information or knowledge
from it.

Let’s see a few retrievers, what they are good for, and how we can customize a retriever.

kNN retriever

To use the kNN retriever, you need to create a new instance of the retriever and provide it with a
list of texts. Here is an example of how to create a kNN retriever using embeddings from OpenAI:

from langchain.retrievers import KNNRetriever
from langchain.embeddings import OpenAIEmbeddings
words = ["cat", "dog", "computer", "animal"]
retriever = KNNRetriever.from_texts(words, OpenAIEmbeddings())

Once the retriever is created, you can use it to retrieve relevant documents by calling the
get_relevant_documents() method and passing a query string. The retriever will return a list of
documents that are most relevant to the query.

Here is an example of how to use the kNN retriever:

result = retriever.get_relevant_documents("dog")
print(result)

This will output a list of documents that are relevant to the query. Each document contains the
page content and metadata:

[Document(page_content='dog', metadata={}),
 Document(page_content='animal', metadata={}),
 Document(page_content='cat', metadata={}),
 Document(page_content='computer', metadata={})]

PubMed retriever

There are a few more specialized retrievers in LangChain, such as the one from PubMed. A
PubMed retriever is a component in LangChain that helps to incorporate biomedical literature
retrieval into their language model applications. PubMed contains millions of citations for
biomedical literature from various sources.

In LangChain, the PubMedRetriever class is used to interact with the PubMed database and
retrieve relevant documents based on a given query. The get_relevant_documents() method of
the class takes a query as input and returns a list of relevant documents from PubMed.

Here’s an example of how to use the PubMed retriever in LangChain:

from langchain.retrievers import PubMedRetriever
retriever = PubMedRetriever()
documents = retriever.get_relevant_documents("COVID")
for document in documents:
 print(document.metadata["Title"])

In this example, the get_relevant_documents() method is called with the query "COVID" . The
method then retrieves relevant documents related to the query from PubMed and returns them as a
list. I am get the following titles as printed output:

The COVID-19 pandemic highlights the need for a psychological support in systemic sc
Host genetic polymorphisms involved in long-term symptoms of COVID-19.
Association Between COVID-19 Vaccination and Mortality after Major Operations.

Custom retrievers

We can implement our own custom retrievers in LangChain by creating a class that is inherited
from the BaseRetriever abstract class. The class should implement the
get_relevant_documents() method, which takes a query string as input and returns a list of
relevant documents.

Here is an example of how a retriever can be implemented:

from langchain.schema import Document, BaseRetriever
class MyRetriever(BaseRetriever):
 def get_relevant_documents(self, query: str, **kwargs) -> list[Document]:
 # Implement your retrieval logic here
 # Retrieve and process documents based on the query
 # Return a list of relevant documents
 relevant_documents = []
 # Your retrieval logic goes here…
 return relevant_documents

You can customize this method to perform any retrieval operations you need, such as querying a
database or searching through indexed documents.

Once you have implemented your retriever class, you can create an instance of it and call the
get_relevant_documents() method to retrieve relevant documents based on a query.

Now that we’ve learned about vector stores and retrievers, let’s put all of this to use. Let’s
implement a chatbot with a retriever!

Implementing a chatbot

We’ll implement a chatbot now. We’ll assume you have the environment installed with the
necessary libraries and the API keys as per the instructions in Chapter 3, Getting Started with
LangChain.

To implement a simple chatbot in LangChain, you can follow this recipe:

1. Set up a document loader.
2. Store documents in a vector store.
3. Set up a chatbot with retrieval from the vector storage.

We’ll generalize this with several formats and make this available through an interface in a web
browser through Streamlit. You’ll be able to drop in your document and start asking questions. In
production, for a corporate deployment for customer engagement, you can imagine that these
documents are already loaded in, and your vector storage can just be static.

Let’s start with the document loader.

Document loader

As mentioned, we want to be able to read different formats:

from typing import Any
from langchain.document_loaders import (
 PyPDFLoader, TextLoader,
 UnstructuredWordDocumentLoader,
 UnstructuredEPubLoader
)
class EpubReader(UnstructuredEPubLoader):
 def __init__(self, file_path: str | list[str], ** kwargs: Any):
 super().__init__(file_path, **kwargs, mode="elements", strategy="fast")
class DocumentLoaderException(Exception):
 pass
class DocumentLoader(object):
 """Loads in a document with a supported extension."""
 supported_extentions = {
 ".pdf": PyPDFLoader,
 ".txt": TextLoader,
 ".epub": EpubReader,
 ".docx": UnstructuredWordDocumentLoader,
 ".doc": UnstructuredWordDocumentLoader
 }

This gives us interfaces to read PDF, text, EPUB, and Word documents with different extensions.
We’ll now implement the loader logic:

import logging
import pathlib
from langchain.schema import Document
def load_document(temp_filepath: str) -> list[Document]:
 """Load a file and return it as a list of documents."""
 ext = pathlib.Path(temp_filepath).suffix
 loader = DocumentLoader.supported_extentions.get(ext)
 if not loader:
 raise DocumentLoaderException(
 f"Invalid extension type {ext}, cannot load this type of file"
)
 loader = loader(temp_filepath)
 docs = loader.load()
 logging.info(docs)
 return docs

This doesn’t handle many errors now, but this can be extended if needed. Now we can make this
loader available from the interface and connect it to vector storage.

Vector storage

This step includes setting up embedding mechanisms, vector storage, and a pipeline to pass our
documents through:

from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.schema import Document, BaseRetriever
def configure_retriever(docs: list[Document]) -> BaseRetriever:
 """Retriever to use."""
 text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=2
 splits = text_splitter.split_documents(docs)
 embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
 vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings)
 return vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 2, "fetch_k

We are splitting our documents in chunks. Then we’ve set up a small model from Hugging Face
for embeddings and an interface to DocArray for taking splits, creating embeddings, and storing
them. Finally, our retriever is looking up documents by maximum marginal relevance.

We are using DocArray as our in-memory vector storage. DocArray provides various features like
advanced indexing, comprehensive serialization protocols, a unified Pythonic interface, and more.
Further, it offers efficient and intuitive handling of multimodal data for tasks such as natural
language processing, computer vision, and audio processing.

We can initialize DocArray with different distance metrics such as cosine and Euclidean – cosine
is the default.

For the retriever, we have two main options:

Similarity-search: We can retrieve document according to similarity.
Maximum Marginal Relevance (MMR): We can apply diversity-based re-ranking of
documents during retrieval to get results that cover different perspectives or points of view
from the documents retrieved so far.

In the similarity search, we can set a similarity score threshold. We’ve opted for MMR. This helps
retrieve a wider breadth of relevant information from different perspectives, rather than just
repetitive, redundant hits. MMR mitigates retrieval redundancy and mitigates the bias inherent in
the document collection. We’ve set the k parameter to 2 , which means we will get 2 documents
back from retrieval.

Retrieval can be improved by contextual compression, a technique where retrieved documents
are compressed, and irrelevant information is filtered out. Instead of returning the full documents
as-is, contextual compression uses the context of the given query to extract and return only the
relevant information. This helps to reduce the cost of processing and improve the quality of
responses in retrieval systems.

The base compressor is responsible for compressing the contents of individual documents based
on the context of the given query. It uses a language model, such as GPT-3, to perform the
compression. The compressor can filter out irrelevant information and return only the relevant
parts of the document.

The base retriever is the document storage system that retrieves the documents based on the
query. It can be any retrieval system, such as a search engine or a database. When a query is made
to the contextual compression retriever, it first passes the query to the base retriever to retrieve
relevant documents. Then, it uses the base compressor to compress the contents of these
documents based on the context of the query. Finally, the compressed documents, containing only
the relevant information, are returned as the response.

We have a few options for contextual compression:

LLMChainExtractor : This passes over the returned documents and extracts from each only
the relevant content.
LLMChainFilter : This is slightly simpler; it only filters only the relevant documents (rather
than the content from the documents).
EmbeddingsFilter : This applies a similarity filter based on the document and the query in
terms of embeddings.

The first two compressors require an LLM to call, which means it can be slow and costly.
Therefore, EmbeddingsFilter can be a more efficient alternative.

We can integrate compression here with a simple switch statement at the end (replacing the
return statement):

if not use_compression:
 return retriever
embeddings_filter = EmbeddingsFilter(
 embeddings=embeddings, similarity_threshold=0.76
)
return ContextualCompressionRetriever(
 base_compressor=embeddings_filter,
 base_retriever=retriever
)

Please note that I’ve just made up a new variable, use_compression . We can feed the
use_compression parameter through configure_qa_chain() to the configure_retriever()
method (not shown here).

For our chosen compressor, EmbeddingsFilter , we need to include two more additional imports:

from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.retrievers import ContextualCompressionRetriever

Now that we have the mechanism to create the retriever. We can set up the chat chain:

from langchain.chains import ConversationalRetrievalChain
from langchain.chains.base import Chain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
def configure_chain(retriever: BaseRetriever) -> Chain:
 """Configure chain with a retriever."""
 # Setup memory for contextual conversation
 memory = ConversationBufferMemory(memory_key="chat_history", return_messages=Tr
 # Setup LLM and QA chain; set temperature low to keep hallucinations in check
 llm = ChatOpenAI(
 model_name="gpt-3.5-turbo", temperature=0, streaming=True
)
 # Passing in a max_tokens_limit amount automatically
 # truncates the tokens when prompting your llm!
 return ConversationalRetrievalChain.from_llm(
 llm, retriever=retriever, memory=memory, verbose=True, max_tokens_limit=400
)

One final thing for the retrieval logic is taking the documents and passing them to the retriever
setup:

import os
import tempfile
def configure_qa_chain(uploaded_files):
 """Read documents, configure retriever, and the chain."""
 docs = []
 temp_dir = tempfile.TemporaryDirectory()
 for file in uploaded_files:
 temp_filepath = os.path.join(temp_dir.name, file.name)
 with open(temp_filepath, "wb") as f:
 f.write(file.getvalue())
 docs.extend(load_document(temp_filepath))
 retriever = configure_retriever(docs=docs)
 return configure_chain(retriever=retriever)

Now that we have the logic of the chatbot, we need to set up the interface. As mentioned, we’ll
use streamlit again:

import streamlit as st
from langchain.callbacks import StreamlitCallbackHandler

st.set_page_config(page_title="LangChain: Chat with Documents", page_icon=" ")

st.title(" LangChain: Chat with Documents")
uploaded_files = st.sidebar.file_uploader(
 label="Upload files",
 type=list(DocumentLoader.supported_extentions.keys()),
 accept_multiple_files=True
)
if not uploaded_files:
 st.info("Please upload documents to continue.")
 st.stop()
qa_chain = configure_qa_chain(uploaded_files)
assistant = st.chat_message("assistant")
user_query = st.chat_input(placeholder="Ask me anything!")
if user_query:
 stream_handler = StreamlitCallbackHandler(assistant)
 response = qa_chain.run(user_query, callbacks=[stream_handler])
 st.markdown(response)

This gives us a chatbot with retrieval that’s usable via a visual interface, and also has drop-in
functionality for custom documents that you need to ask questions about.

Figure 5.6: Chatbot interface with document loaders in different formats

You can see the full implementation on GitHub. You can play around with the chatbot to see how
it works and when it doesn’t.

It’s important to note that LangChain has limitations on input size and cost. You may need to
consider workarounds to handle larger knowledge bases or optimize the cost of API usage.
Additionally, fine-tuning models or hosting the LLM in-house can be more complex and less

accurate compared to using commercial solutions. We’ll look at these use cases in Chapter 8,
Customizing LLMs and Their Output.

Memory is a component in the LangChain framework that allows chatbots and language models
to remember previous interactions and information. It is essential in applications like chatbots
because it enables the system to maintain context and continuity in conversations. Let’s have a
look at memory and its mechanisms in LangChain.

Memory

Memory enables chatbots to retain information from previous interactions, maintaining continuity
and conversational context. This is analogous to human recall, which allows coherent, meaningful
dialogue. Without memory, chatbots struggle to comprehend references to prior exchanges,
resulting in disjointed, unsatisfying conversations.

Specifically, memory facilitates accuracy by retaining contextual understanding across the entire
dialogue. The chatbot can reference this holistic perspective of the conversation to respond
appropriately. Memory also enhances personalization and faithfulness by consistently recognizing
facts and details from past interactions.

By storing knowledge from message sequences, memory permits extracting insights to improve
performance over time. Architectures like LangChain implement memory so chatbots can build
on previous exchanges, answer follow-up questions, and sustain natural, logical dialogues.

Overall, memory is a crucial component for sophisticated chatbots, allowing them to learn from
conversations and mimic the recall and contextual awareness that comes naturally to human
interlocutors. Further advances in retention and reasoning with long-term memory could lead to
more meaningful and productive human-AI interaction.

Conversation buffers

Here’s a practical example in Python that demonstrates how to use the LangChain memory
feature:

from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
Creating a conversation chain with memory
memory = ConversationBufferMemory()
llm = ChatOpenAI(
 model_name="gpt-3.5-turbo", temperature=0, streaming=True
)
chain = ConversationChain(llm=llm, memory=memory)
User inputs a message

user_input = "Hi, how are you?"
Processing the user input in the conversation chain
response = chain.predict(input=user_input)
Printing the response
print(response)
User inputs another message
user_input = "What's the weather like today?"
Processing the user input in the conversation chain
response = chain.predict(input=user_input)
Printing the response
print(response)
Printing the conversation history stored in memory
print(memory.chat_memory.messages)

In this example, we create a conversation chain with memory using ConversationBufferMemory ,
which is a simple wrapper that stores the messages in a variable. The user’s inputs are processed
using the predict() method of the conversation chain. The conversation chain retains the
memory of previous interactions, allowing it to provide context-aware responses.

Instead of constructing the memory separately from the chain, we could have simplified things:

conversation = ConversationChain(
 llm=llm,
 verbose=True,
 memory=ConversationBufferMemory()
)

We are setting verbose to True to see the prompts.

After processing the user inputs, we print the response generated by the conversation chain.
Additionally, we print the conversation history stored in memory using
memory.chat_memory.messages . The save_context() method is used to store inputs and outputs.
You can use the load_memory_variables() method to view the stored content. To get the history
as a list of messages, a return_messages parameter is set to True . We’ll see examples of this in
this section.

ConversationBufferWindowMemory is a memory type provided by LangChain that keeps track of
the interactions in a conversation over time. Unlike ConversationBufferMemory , which retains all
previous interactions, ConversationBufferWindowMemory only keeps the last k interactions, where
k is the window size specified. Here’s a simple example of how to use
ConversationBufferWindowMemory in LangChain:

from langchain.memory import ConversationBufferWindowMemory
memory = ConversationBufferWindowMemory(k=1)

In this example, the window size is set to 1 , meaning that only the last interaction will be stored
in memory.

We can use the save_context() method to save the context of each interaction. It takes two
arguments: user_input and model_output . These represent the user’s input and the corresponding
model’s output for a given interaction.

memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.save_context({"input": "not much you"}, {"output": "not much"})

We can see the message with memory.load_memory_variables({}) .

We can also customize the conversational memory in LangChain, which involves modifying the
prefixes used for the AI and human messages, as well as updating the prompt template to reflect
these changes.

To customize the conversational memory, you can follow these steps:

1. Import the necessary classes and modules from LangChain:

from langchain.llms import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts.prompt import PromptTemplate
llm = OpenAI(temperature=0)

2. Define a new prompt template that includes the customized prefixes. You can do this by
creating a PromptTemplate object with the desired template string:

template = """The following is a friendly conversation between a human and an A
Current conversation:
{history}
Human: {input}
AI Assistant:"""
PROMPT = PromptTemplate(input_variables=["history", "input"], template=templat
conversation = ConversationChain(
 prompt=PROMPT,
 llm=llm,
 verbose=True,
 memory=ConversationBufferMemory(ai_prefix="AI Assistant"),
)

In this example, the AI prefix is set to AI Assistant instead of the default AI .

Remembering conversation summaries

ConversationSummaryMemory is a type of memory in LangChain that generates a summary of the
conversation as it progresses. Instead of storing all messages verbatim, it condenses the
information, providing a summarized version of the conversation. This is particularly useful for
extended conversations, where including all previous messages might exceed token limits.

To use ConversationSummaryMemory , first create an instance of it, passing the language model
(llm) as an argument. Then, use the save_context() method to save the interaction context, which
includes the user input and AI output. To retrieve the summarized conversation history, use the
load_memory_variables() method.

Here’s an example:

from langchain.memory import ConversationSummaryMemory
from langchain.llms import OpenAI
Initialize the summary memory and the language model
memory = ConversationSummaryMemory(llm=OpenAI(temperature=0))
Save the context of an interaction
memory.save_context({"input": "hi"}, {"output": "whats up"})
Load the summarized memory
memory.load_memory_variables({})

Storing knowledge graphs

In LangChain, we can also extract information from the conversation as facts and store these by
integrating a knowledge graph as the memory. This can enhance the capabilities of language
models and enable them to leverage structured knowledge during text generation and inference.

A knowledge graph is a structured knowledge representation model that organizes information in
the form of entities, attributes, and relationships. It represents knowledge as a graph, where
entities are represented as nodes and relationships between entities are represented as edges. In a
knowledge graph, entities can be any concept, object, or thing in the world, and attributes
describe the properties or characteristics of these entities. Relationships capture the connections
and associations between entities, providing contextual information and enabling semantic
reasoning.

There’s functionality in LangChain for knowledge graphs for retrieval; however, LangChain also
provides memory components to automatically create a knowledge graph based on our
conversation messages.

We’ll instantiate the ConversationKGMemory class and pass your LLM instance as the llm
parameter:

from langchain.memory import ConversationKGMemory
from langchain.llms import OpenAI
llm = OpenAI(temperature=0)
memory = ConversationKGMemory(llm=llm)

As the conversation progresses, we can save relevant information from the knowledge graph into
the memory using the save_context() function of ConversationKGMemory .

Combining several memory mechanisms

LangChain also allows combining multiple memory strategies using the CombinedMemory class.
This is useful when you want to maintain various aspects of the conversation history. For
instance, one memory could be used to store the complete conversation log:

from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory, CombinedMemory, Conversation
Initialize language model (with desired temperature parameter)
llm = OpenAI(temperature=0)
Define Conversation Buffer Memory (for retaining all past messages)
conv_memory = ConversationBufferMemory(memory_key="chat_history_lines", input_key="
Define Conversation Summary Memory (for summarizing conversation)
summary_memory = ConversationSummaryMemory(llm=llm, input_key="input")
Combine both memory types
memory = CombinedMemory(memories=[conv_memory, summary_memory])
Define Prompt Template
_DEFAULT_TEMPLATE = """The following is a friendly conversation between a human and
Summary of conversation:
{history}
Current conversation:
{chat_history_lines}
Human: {input}
AI:"""
PROMPT = PromptTemplate(input_variables=["history", "input", "chat_history_lines"],
Initialize the Conversation Chain
conversation = ConversationChain(llm=llm, verbose=True, memory=memory, prompt=PROMP
Start the conversation
conversation.run("Hi!")

In this example, we first instantiate the language model and the several types of memories we’re
using – ConversationBufferMemory for retaining the full conversation history and
ConversationSummaryMemory for creating a summary of the conversation. We then combine these
memories using CombinedMemory . We also define a prompt template that accommodates our

memory usage and, finally, we create and run ConversationChain by providing our language
model, memory, and prompt to it.

ConversationSummaryBufferMemory is used to keep a buffer of recent interactions in memory and
compiles old interactions into a summary instead of completely flushing them out. The threshold
for flushing interactions is determined by token length and not by the number of interactions.

To use this, the memory buffer needs to be instantiated with the LLM, and max_token_limit .
ConversationSummaryBufferMemory offers a method called predict_new_summary() , which can be
used directly to generate a conversation summary.

Long-term persistence

There are also different ways of storing conversations in dedicated backends. Zep, being one such
example, provides a persistent backend to store, summarize, and search chat histories using vector
embeddings and auto-token counting. This long-term memory with fast vector search and
configurable summarization enables more capable conversational AI with context awareness.

A practical example of using Zep is to integrate it as the long-term memory for a chatbot or AI
app. By using the ZepMemory class, developers can initialize a ZepMemory instance with the Zep
server URL, API key, and a unique session identifier for the user. This allows the chatbot or AI
app to store and retrieve chat history or other relevant information.

For example, in Python, you can initialize a ZepMemory instance as follows:

from langchain.memory import ZepMemory
ZEP_API_URL = "http://localhost:8000"
ZEP_API_KEY = "<your JWT token>"
session_id = str(uuid4())
memory = ZepMemory(
 session_id=session_id,
 url=ZEP_API_URL,
 api_key=ZEP_API_KEY,
 memory_key="chat_history",
)

This sets up a ZepMemory instance that you can use in your chains. Please note that the URL and
API key need to be set according to your setup. As mentioned, once the memory is set up, you can
use it in your chatbot’s chain or with your AI agent to store and retrieve chat history or other
relevant information. Overall, Zep simplifies the process of persisting, searching, and enriching
chatbot or AI app histories, allowing developers to focus on developing their AI applications
rather than building memory infrastructure.

In the next section, we’ll look at using moderation to make sure responses are adequate.
Moderation is crucial for creating a safe, respectful, and inclusive environment for users,
protecting brand reputation, and complying with legal obligations.

Moderating responses

The role of moderation in chatbots is to ensure that the bot’s responses and conversations are
appropriate, ethical, and respectful. It involves implementing mechanisms to filter out offensive
or inappropriate content and discouraging abusive behavior from users. This is an important part
of any application that we’d want to deploy for customers.

In the context of moderation, a constitution refers to a set of guidelines or rules that govern the
behavior and responses of the chatbot. It outlines the standards and principles that the chatbot
should adhere to, such as avoiding offensive language, promoting respectful interactions, and
maintaining ethical standards. The constitution serves as a framework for ensuring that the
chatbot operates within the desired boundaries and provides a positive user experience.

Moderation and having a constitution are important in chatbots for several reasons:

Ensuring ethical behavior: Chatbots can interact with a wide range of users, including
vulnerable individuals. Moderation helps ensure that the bot’s responses are ethical,
respectful, and do not promote harmful or offensive content.
Protecting users from inappropriate content: Moderation helps prevent the dissemination
of inappropriate or offensive language, hate speech, or any content that may be harmful or
offensive to users. It creates a safe and inclusive environment for users to interact with the
chatbot.
Maintaining brand reputation: Chatbots often represent a brand or organization. By
implementing moderation, the developer can ensure that the bot’s responses align with the
brand’s values and maintain a positive reputation.
Preventing abusive behavior: Moderation can discourage users from engaging in abusive
or improper behavior. By implementing rules and consequences, such as the “two strikes”
rule mentioned in the example, the developer can discourage users from using provocative
language or engaging in abusive behavior.
Legal compliance: Depending on the jurisdiction, there may be legal requirements for
moderating content and ensuring that it complies with laws and regulations. Having a
constitution or set of guidelines helps the developer adhere to these legal requirements.

You can add a moderation chain to an LLMChain instance or a Runnable instance to ensure that the
generated output from the language model is not harmful.

If the content passed into the moderation chain is deemed harmful, there are a few ways to handle
it. You can choose to throw an error in the chain and handle it in your application, or you can
return a message to the user explaining that the text was harmful. The specific handling method
depends on your application’s requirements.

In LangChain, first, you would create an instance of the OpenAIModerationChain class, which is a
pre-built moderation chain provided by LangChain. This chain is specifically designed to detect
and filter out harmful content:

from langchain.chains import OpenAIModerationChain
moderation_chain = OpenAIModerationChain()

Next, you would create an instance of the LLMChain class or of a Runnable instance, which
represents your language model chain. This is where you define your prompt and interact with the
language model. We can do this using the LCEL syntax, which we’ve introduced in Chapter 4,
Building Capable Assistants:

from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema import StrOutputParser
cot_prompt = PromptTemplate.from_template(
 "{question} \nLet's think step by step!"
)
llm_chain = cot_prompt | ChatOpenAI() | StrOutputParser()

This is a chain with a Chain of Thought (CoT) prompt, which includes the instruction to think
step by step.

To append the moderation chain to the language model chain, you can use the SequentialChain
class or the LCEL (which is recommended). This allows you to chain multiple chains together in
a sequential manner:

chain = llm_chain | moderation_chain

Now, when you want to generate text using the language model, you would pass your input text
through the moderation chain first, and then through the language model chain.

response = chain.invoke({"question": "What is the future of programming?"})

The first chain will come up with a preliminary answer. Then, the moderation chain will evaluate
this answer and filter out any harmful content. If the input text is deemed harmful, the moderation
chain can either throw an error or return a message indicating that the text is not allowed. I’ve
added an example for moderation to the chatbot app on GitHub.

Further, guardrails can be used to define the behavior of the language model on specific topics,
prevent it from engaging in discussions on unwanted topics, guide the conversation along a
predefined path, enforce a particular language style, extract structured data, and more.

In the context of LLMs, guardrails (rails for short) refer to specific ways of controlling the
model’s output. They provide a means to add programmable constraints and guidelines to ensure
the output of the language model aligns with desired criteria.

Here are a few ways guardrails can be used:

Controlling topics: Guardrails allow you to define the behavior of your language model or
chatbot on specific topics. You can prevent it from engaging in discussions on unwanted or
sensitive topics like politics.
Predefined dialogue paths: Guardrails enable you to define a predefined path for the
conversation. This ensures that the language model or chatbot follows a specific flow and
provides consistent responses.
Language style: Guardrails allow you to specify the language style that the language model
or chatbot should use. This ensures that the output is in line with your desired tone,
formality, or specific language requirements.
Structured data extraction: Guardrails can be used to extract structured data from the
conversation. This can be useful for capturing specific information or performing actions
based on user inputs.

Overall, guardrails provide a way to add programmable rules and constraints to LLMs and
chatbots, making them more trustworthy, safe, and secure in their interactions with users. By
appending the moderation chain to your language model chain, you can ensure that the generated
text is moderated and safe for use in your application.

Summary

In the previous chapter, we discussed tool-augmented LLMs, which involve the utilization of
external tools or knowledge resources such as document corpora. In this chapter, we focused on
retrieving relevant data from sources through vector search and injecting it into the context. This
retrieved data serves as additional information to augment the prompts given to LLMs. I also

introduced retrieval and vector mechanisms, and we discussed implementing a chatbot, the
importance of memory mechanisms, and the importance of appropriate responses.

The chapter started with an overview of chatbots, their evolution, and the current state of
chatbots, highlighting the practical implications and enhancements of the capabilities of the
current technology. We discussed the importance of proactive communication. We explored
retrieval mechanisms, including vector storage, with the goal of improving the accuracy of
chatbot responses. We went into detail on methods for loading documents and information,
including vector storage and embedding.

Additionally, we discussed memory mechanisms for maintaining knowledge and the state of
ongoing conversations. The chapter concluded with a discussion on moderation, emphasizing the
importance of ensuring that responses are respectful and aligned with organizational values.

The features discussed in this chapter serve as a starting point to investigate issues like memory,
context, and the moderation of speech, but they can also be interesting for issues like
hallucinations.

Questions

Please see if you can produce the answers to these questions from memory. I’d recommend you
go back to the corresponding sections of this chapter if you are unsure about any of them:

1. Please name 5 different chatbots!
2. What are some important aspects of developing a chatbot?
3. What does RAG stand for?
4. What is an embedding?
5. What is vector search?
6. What is a vector database?
7. Please name 5 different vector databases!
8. What is a retriever in LangChain?
9. What is memory and what are the memory options in LangChain?

10. What is moderation, what’s a constitution, and how do they work?

Join our community on Discord

Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/lang

clbr://internal.invalid/book/OEBPS/Chapter_05.xhtml

OceanofPDF.com

https://oceanofpdf.com/

6

Developing Software with

Generative AI

While this book is about integrating generative AI particularly LLMs into
software applications, in this chapter, we’ll talk about how we can leverage
LLMs to help in software development. This is a big topic; software
development has been highlighted in reports by several consultancies, such
as KPMG and McKinsey, as one of the domains impacted most by
generative AI.

We’ll first discuss how LLMs could help in coding tasks, and I’ll provide an
overview to see how far we have come in automating software
development. Then, we’ll play around with a few models, evaluating the
generated code qualitatively. Next, we’ll implement a fully automated agent
for software development tasks. We’ll go through the design choices and
show some of the results that we got in an agent implementation of only a
few lines of Python with LangChain. We’ll mention many possible
extensions to this approach.

Throughout the chapter, we’ll work on different practical approaches to
automatic software development, which you can find in the
software_development directory in the GitHub repository for the book at

https://github.com/benman1/generative_ai_with_lang

chain.

In short, the main sections in this chapter are:

Software development and AI
Writing code with LLMs
Automated software development

We’ll begin the chapter by giving a broad overview of the current state of
using AI for software development.

Software development and

AI

The emergence of powerful AI systems like ChatGPT has sparked great
interest in using AI as a tool to assist software developers. A June 2023
report by KPMG estimated that about 25% of software development tasks
could be automated away. A McKinsey report from the same month
highlighted software development as a function, where generative AI can
have a significant impact in terms of cost reduction and efficiency gain.

The history of software development has been marked by efforts to increase
abstraction from machine code to focus more on problem-solving. Early
procedural languages like FORTRAN and COBOL in the 1950s enabled
this by introducing control structures, variables, and other high-level
constructs. As programs grew larger, structured programming concepts
emerged to improve code organization through modularity, encapsulation,
and stepwise refinement. Object-oriented languages like Simula and

https://github.com/benman1/generative_ai_with_langchain

Smalltalk in the 1960s-70s introduced new paradigms for modularity
through objects and classes.

As codebases expanded, maintaining quality became more challenging,
leading to methodologies like agile development with iterative cycles and
continuous integration. Integrated development environments evolved to
provide intelligent assistance for coding, testing, and debugging. Static and
dynamic program analysis tools helped identify issues in code. With neural
networks and deep learning advancing in the 1990s and 2000s, machine
learning techniques began to be applied to improve analysis capabilities for
program synthesis, bug detection, vulnerability discovery, and automating
other programming tasks.

Today’s AI assistants integrate predictive typing, syntax checking, code
generation, and other features to directly support software development
workflows, realizing early aspirations to automate programming itself.

New code LLMs such as ChatGPT and Microsoft’s Copilot are highly
popular generative AI models, with millions of users and significant
productivity-boosting capabilities. There are different tasks related to
programming that LLMs can tackle, such as these:

Code completion: This task involves predicting the next code element
based on the surrounding code. It is commonly used in Integrated
Development Environments (IDEs) to assist developers in writing
code.
Code summarization/documentation: This task aims to generate a
natural language summary or documentation for a given block of
source code. This summary helps developers understand the purpose
and function of the code without having to read the actual code.

Code search: The objective of code search is to find the most relevant
code snippets based on a given natural language query. This task
involves learning the joint embeddings of the query and code snippets
to return the expected ranking order of code snippets.
Bug finding/fixing: AI systems can reduce manual debugging efforts
and enhance software reliability and security. Many bugs and
vulnerabilities are hard to find for programmers, although there are
typical patterns for which code validation tools exist. As an alternative,
LLMs can spot problems within code and (when prompted) correct
them. Thus, these systems can reduce manual debugging efforts and
help improve software reliability and security.
Test generation: Similar to code completion, LLMs can generate unit
tests (Codet: Code Generation with Generated Tests; Bei Chen and
others, 2022) and other types of tests enhancing the maintainability of
a codebase.

AI programming assistants combine the interactivity of earlier systems with
innovative natural language processing. Developers can query
programming problems in plain English or describe desired functions,
receiving generated code or debugging tips. However, risks remain around
code quality, security, and excessive dependence. Striking the right balance
of computer augmentation while maintaining human oversight is an
ongoing challenge.

Let’s look at the current performance of AI systems for coding, particularly
code LLMs.

Code LLMs

Quite a few AI models have emerged, each with their own strengths and
weaknesses, which are continuously competing to improve and deliver
better results. Performance continues to improve with models like
StarCoder, though data quality can also play a key role. Studies show LLMs
aid workflow efficiency but need more robustness, integration, and
communication abilities.

Powerful pre-trained models like GPT-3 and GPT-4 enable context-aware,
conversational support. These approaches also empower bug detection,
repair recommendations, automated testing tools, and code search.

Recent milestones:

OpenAI’s Codex model in 2021 could generate code
snippets from natural language descriptions, showing
promise for assisting programmers.
GitHub’s Copilot, launched in 2021, was an early
integration of LLMs into IDEs for autocompletion,
achieving rapid adoption.
DeepMind’s AlphaCode in 2022 matched human
programming speed, showing the ability to generate
full programs.
OpenAI’s ChatGPT in 2022 demonstrated
exceptionally coherent natural language conversations
about coding.
DeepMind’s AlphaTensor and AlphaDev in 2022
demonstrated AI’s ability to discover novel, human-
competitive algorithms, unlocking performance
optimizations.

Microsoft’s GitHub Copilot, which is based on OpenAI’s Codex, draws on
open-source code to suggest full code blocks in real time. According to a
GitHub report in June 2023, developers accepted the AI assistant’s
suggestions about 30 percent of the time, which suggests that the tool can
provide useful suggestions, with less experienced developers profiting the
most.

Codex is a model developed by OpenAI. It can parse
natural language and generate code, and it powers GitHub
Copilot. A descendant of the GPT-3 model, it has been fine-
tuned on publicly available code from GitHub, 159
gigabytes of Python code from 54 million GitHub
repositories, for programming applications.

To illustrate the progress made in creating software, let’s look at
quantitative results in a benchmark: the HumanEval dataset, introduced in
the Codex paper (Evaluating Large Language Models Trained on Code,
2021), is designed to test the ability of LLMs to complete functions based
on their signature and docstring. It evaluates the functional correctness of
synthesizing programs from docstrings. The dataset includes 164
programming problems that cover various aspects, such as language
comprehension, algorithms, and simple mathematics. Some of the problems
are comparable to simple software interview questions. A common metric
on HumanEval is pass@k (pass@1) – this refers to the fraction of correct
samples when generating k code samples per problem.

This chart summarizes the AI models on the HumanEval task (number of
parameters against the pass@1 performance on HumanEval). A few

performance metrics are self-reported:

Figure 6.1: Model comparison on HumanEval coding task benchmark

You can see lines marking the performance of closed-source models such as
GPT-4, GPT-4 with reflection, PaLM-Coder 540B, GPT-3.5, and Claude 2.
This is mainly based on the Big Code Models Leaderboard, which is hosted
on Hugging Face, but I’ve added a few more models for comparison, and
I’ve omitted models with more than 70 billion parameters. Some models
have self-reported performance, so you should take this with a grain of salt.

All models can do coding at some level, since the data used in training most
LLMs includes some source code. For example, at least about 11% of the
code in The Pile , a dataset that was curated by EleutherAI’s GPT-Neo for
training open-source alternatives of the GPT models, is from GitHub

(102.18 GB). The Pile was used in the training of Meta’s Llama, Yandex’s
YaLM 100B, and many others.

Although HumanEval has been broadly used as a benchmark for code
LLMs, there are a multitude of benchmarks for programming. Here’s an
example question and the response from an advanced computer science test
given to Codex (source: My AI Wants to Know if This Will Be on the Exam:
Testing OpenAI’s Codex on CS2 Programming Exercises by James Finnie-
Ansley and others, 2023):

Figure 6.2: A question given in a CS2 exam (left) and the Codex response

Most recently, the paper Textbooks Are All You Need by Suriya Gunasekar
and others at Microsoft Research (2023) introduced phi-1, a 1.3B-parameter
Transformer-based language model for code. The paper demonstrates how
high-quality data can enable smaller models to match larger models for
code tasks. The authors start with a 3 TB corpus of code from The Stack
and Stack Overflow. An LLM filters this to select 6B high-quality tokens.
Separately, GPT-3.5 generates 1B tokens mimicking a textbook style. The
small 1.3B-parameter phi-1 model is trained on this filtered data. Phi-1 is
then fine-tuned on exercises synthesized by GPT-3.5. Results show phi-1
matches or exceeds the performance of models over 10x its size on
benchmarks like HumanEval and MBPP.

The core conclusion is that high-quality data significantly impacts model
performance, potentially altering scaling laws. Instead of brute-force

scaling, data quality should take precedence. The authors reduce costs by
using a smaller LLM to select data, rather than an expensive full evaluation.
Recursively filtering and retraining on selected data could enable further
improvements.

Generating complete programs that demonstrate a deep understanding of
the problem and planning involved requires fundamentally different
capabilities than producing short code snippets that mainly translate
specifications directly into API calls. While recent models can achieve
impressive performance on snippet generation, there remains a massive step
up in difficulty in creating full programs.

However, novel reasoning-focused strategies like the Reflexion framework
(Reflexion: Language Agents with Verbal Reinforcement Learning by Noah
Shinn and others; 2023) can lead to enormous improvements even for short
code snippets. Reflexion enables trial-and-error-based learning, with
language agents verbally reflecting on task feedback and storing this
experience in an episodic memory buffer.

This reflection and memory of past outcomes guides better future decisions.
On coding tasks, Reflexion significantly outperformed previous state-of-
the-art models, achieving 91% pass@1 accuracy on the HumanEval
benchmark compared to just 67% for GPT-4 as reported originally by
OpenAI, although that metric was surpassed later, as the graph shows.

This demonstrates the substantial potential of reasoning-driven approaches
to overcome limitations and boost the performance of language models like
GPT-4 for programming. Rather than just relying on pattern recognition,
integrating symbolic reasoning into model architectures and training could
provide a path toward more human-like semantic understanding and
planning abilities for generating complete programs in the future.

The rapid progress in applying large language models to automate
programming tasks is encouraging, but limitations persist, especially in
robustness, generalization, and true semantic understanding. As more
capable models emerge, thoughtfully integrating AI assistance into
developer workflows raises important considerations around human-AI
collaboration, establishing trust, and ethical usage. Ongoing research is
actively exploring approaches to make these models more accurate, safe,
and beneficial for both programmers and society at large. With careful
oversight and further technical development to ensure reliability and
transparency, AI programming assistants have immense potential to
increase productivity by automating tedious tasks, while empowering
human developers to focus their creativity on solving complex problems.
However, fully realizing this potential requires continued progress on the
technical challenges, further developing standards and best practices, and
proactive engagement with the legal and ethical issues surrounding these
emerging technologies.

In the next section, we’ll see how we can generate software code with
LLMs and how we can execute this from within LangChain.

Writing code with LLMs

Let’s start off by applying a model to write code for us. We can use one of
the publicly available models for generating code. I’ve listed a few
examples before, such as ChatGPT or Bard. From LangChain, we can call
OpenAI’s LLMs, PaLM’s code-bison, or a variety of open-source models,
for example, through Replicate, Hugging Face Hub, or – for local models –
Llama.cpp, GPT4All, or Hugging Face pipeline integrations.

StarCoder

Let’s have a look at StarCoder, which is a small model for code generation
and quite capable of doing that. It is available at Hugging Face Spaces at
this URL:
https://huggingface.co/spaces/bigcode/bigcode-

playground

This screenshot shows the model in a playground on Hugging Face Spaces:

Figure 6.3: StarCoder Models Playground

We can choose between different models: StarCoder, StarCoderPlus, and
StarCoderBase. Please note that, as the description says, the StarCoder
model is not instruction-tuned, which means that we can’t give it tasks to
do. We can’t say “write a class that…” but we can ask it to complete a text,
where we prompt the model with # dataclass of customer including an
alphanumeric id, a name, and a birthday – let’s try this!

We can toggle settings for temperature, max new tokens, top-n, and a
repetition penalty. For anything non-trivial, we need to increase the max

https://huggingface.co/spaces/bigcode/bigcode-playground

new tokens setting.

We should be getting a code snippet as a response on the webpage. I got the
following code, which gives us a useful data model for our hypothetical
customer:

@dataclass(frozen=True) # frozen means that the class cannot b
class Customer:
 cust_id : str = field() # this defines how to create inst
 firstname : str = "" # these are default values if no
 lastname : str = "" # note that there can only ever e
 def __post_init__(self):
 """This method runs automatically once upon instantiati
 self._validate_cust_id() # validate input before sav
 self.__set_fullname__() # set full name based on gi
 @property # getter function used by Python interpret
 def fullname(self)->str:
 return f"{self.lastname}, {self.firstname}"
 ## private methods below here
 ### validation functions go here
 def _validate_cust_id(self):
 assert len(self.cust_id)==8, \
 ValueError("Customer ID must have exactly eight cha
 try:
 int(self.cust_id[0]) == True
 except Exception as err:
 raise TypeError('First character of CustID should b
 #### setter functions go here
 def __set_fullname__(self):
 '''sets the customers' full name'''
 names = [x.strip().title() for x in re.split("[\W]+", s
 print(names)
 self.firstname=' '.join(filter(None,[n[:3]for n in reve
 self.lastname =''.join([' '*(4-len(l))+' '+ l[-2:]if no

The preceding code is missing the imports, which would usually come
before the comment prompt, so I can’t fault the model for it. We need to add

these two lines to the top:

import re
from dataclasses import dataclass, field

This doesn’t throw an error when we run it as is, which is impressive.
However, there are a few things not ideal or even wrong with it when we
look at it in a bit more detail.

I don’t like the commenting style and lack of docstrings. There are some
print() statements left in the code; often this is done for debugging
purposes. This shouldn’t be in production code. It’s not ideal to have empty
strings as defaults for firstname and lastname . I would expect the
customer ID to be assigned based on a hashing function – I can’t see why
the ID should have exactly eight characters as enforced in the validation
function for the property.

There are more problems with this code that affect its correctness and
readability, as well as a few other, more crucial problems, including
attempting to write read-only attributes. firstname and lastname in the
data class can’t be changed after creation because they are frozen. The logic
about creating a variable name from firstname and lastname using regular
expressions in a non-standard syntax is strange to say the least – and
incorrect. The last name gets dropped in the process. The filter on the
reversed name is also highly suspect.

I’ll leave it at that. This has given us some promising ideas and a structure
to start with, but it’s not production-level code. It doesn’t even work. You
can see this code in the customer.py file in the book’s GitHub repo under
the software_development folder.

Let’s try again to get something more useful out of the model. We started
off on the wrong foot. We started a code snippet with bad syntax and
expected code that works. That’s not realistic. Let’s try again, and start with
a prompt that is more up to standard:

"""Customer data model.
Here we implement our data model for customers, a dataclass wit
fields firstname, lastname, customer_id (a hash).
"""

We get the following result:

@dataclass(frozen=True) # frozen means that the object cannot
class Customer:
 """A class representing one single customer."""
 firstname: str = ""
 lastname: str = ""
 id_: int = field(default=-1024, init=False)

 def __post_init__(self):
 self.__hash__()

 @property
 def fullname(self)->str:
 return f"{self.firstname} {self.lastname}"

 def __eq__(self, other:"Customer")->bool:
 if isinstance(other, type(self)):
 return all([
 getattr(self, attr)==getattr(other,attr)
 for attr in ["firstname", "lastname"]])
 else:
 raise TypeError("Cannot compare different types")

 def __lt__(self, other:"Customer"):
 try:
 assert len({type(x) for x in [self, other]})==1

 if not hasattr(self,"fullname"):
 setattr(self, 'fullname',f'{self.firstname}{sel

 if not hasattr(other,'fullname'):
 setattr(other, 'fullname',f'{other.firstname}{o
 return self.fullname < other.fullname

 except AssertionError as e:
 print('Error:',e)

 def __repr__(self):
 return f"Customer('{self.firstname}', '{self.lastname}'

 def __hash__(self):
 hsh = abs(hash((self.firstname+self.lastname))) % ((sys
 self.id_=hsh

 return hsh

It’s good to see the customer ID is created using a hash as expected. There
is some boilerplate code for comparing two different customer objects.
However, again, there are problems like the ones before. First, it’s missing
the imports, something I don’t understand given our prompt, which should
be a module docstring found at the start of a file. The imports would come
right after this. Second, it’s again attempting to set an attribute after
initialization of the class that’s supposed to be frozen, showing a lack of
understanding of frozen attributes.

After fixing these two problems, we get our first Customer() . But then
there’s another problem, where the customer ID is referenced with the
wrong name, demonstrating a lack of consistency. After fixing this, we can
initialize our customer, look at the attributes, and compare one customer to

another. I can see how this approach is starting to become useful for writing
boilerplate code.

You can see this code in the customer2.py file in the book’s GitHub repo,
again in the software development folder.

StarChat

Let’s try an instruction-tuned model so we can give it tasks! StarChat,
which is based on StarCoder, is available on Hugging Face at
https://huggingface.co/spaces/HuggingFaceH4/starch

at-playground.

People who own playgrounds on HuggingFace can pause or
take down their playground whenever they wish. If you
can’t access the HuggingFace StarChat playground for
whatever reason, there are lots of other playgrounds that
you could try, first of all, the BigCode playground, which
enables access to StarCoderPlus, StarCoderBase, and
StarCoder:
https://huggingface.co/spaces/bigcode/bi

gcode-playground

You can also find quite a few playgrounds that are made
available by other people, for example:

A StarCoder playground by Sanjay Wankhede:
https://huggingface.co/spaces/sanjayw

/starcoder-playground

https://huggingface.co/spaces/HuggingFaceH4/starchat-playground
https://huggingface.co/spaces/bigcode/bigcode-playground
https://huggingface.co/spaces/sanjayw/starcoder-playground

A playground for Code Llama models:
https://huggingface.co/spaces/codella

ma/codellama-playground

Joshua Lochner’s AI Code playground that allows
switching between three models including CodeGen-
Mono 350M:
https://huggingface.co/spaces/Xenova/

ai-code-playground

This screenshot shows an example in StarChat, but please note that not all
the code is visible:

Figure 6.4: StarChat implementing a function in Python for calculating prime numbers

You can find the complete code listing on GitHub.

For this example, which is usually covered in first-year Computer Science
courses, no imports are needed. The algorithm’s implementation is
straightforward. It executes right away and gives the expected result. Within
LangChain, we can use the HuggingFaceHub integration like this:

https://huggingface.co/spaces/codellama/codellama-playground
https://huggingface.co/spaces/Xenova/ai-code-playground

from langchain import HuggingFaceHub
llm = HuggingFaceHub(
 task="text-generation",
 repo_id="HuggingFaceH4/starchat-alpha",
 model_kwargs={
 "temperature": 0.5,
 "max_length": 1000
 }
)
print(llm(text))

In this case, text is any prompt you want to give the model.

As of late 2023, this LangChain integration has had some issues with
timeouts – hopefully, this will be fixed soon. We are not going to use it
here.

Llama 2

Llama 2 is not one of the best models for coding, with a pass@1 of about
29%; however, we can try it out on Hugging Face chat:

Figure 6.5: Hugging Face chat with Llama 2 at https://huggingface.co/chat/

Please note that this is only the beginning of the output. Llama 2
implements this well and the explanations are spot on. Well done, StarCoder
and Llama 2! Or was this just too easy?

Small local model

There are so many ways to accomplish code completion or generation. We
can even try a small local model:

from transformers import AutoModelForCausalLM, AutoTokenizer, p
checkpoint = "Salesforce/codegen-350M-mono"
model = AutoModelForCausalLM.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
pipe = pipeline(
 task="text-generation",
 model=model,
 tokenizer=tokenizer,
 max_new_tokens=500
)
text = """
def calculate_primes(n):
 \"\"\"Create a list of consecutive integers from 2 up to N.
 For example:
 >>> calculate_primes(20)
 Output: [2, 3, 5, 7, 11, 13, 17, 19]
 \"\"\"
"""

The preceding code is prompting CodeGen, a model by Salesforce (A
Conversational Paradigm for Program Synthesis; Erik Nijkamp and
colleagues, 2022). CodeGen 350 Mono received a pass@1 performance of
12.76% in HumanEval. As of July 2023, new versions of CodeGen have

https://huggingface.co/chat/

been released with only 6B parameters, which are very competitive. This
clocks in at a performance of 26.13%. This last model was trained on the
BigQuery dataset containing C, C++, Go, Java, JavaScript, and Python, as
well as the Big Python dataset, which consists of 5.5 TB of Python code.

Since this model was released before the HumanEval benchmark, the
performance statistics for the benchmark were not part of the initial
publication.

We can now get the output from the pipeline like this:

completion = pipe(text)
print(completion[0]["generated_text"])

Alternatively, we can wrap this pipeline via the LangChain integration:

from langchain import HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)
llm(text)

This is a bit verbose. There’s also the more convenient constructor method,
HuggingFacePipeline.from_model_id() .

I am getting something similar to the StarCoder output. I had to add an
import math , but the function works.

We could use this pipeline in a LangChain agent; however, please note that
this model is not instruction-tuned, so you cannot give it tasks, only
completion tasks. You can also use these models for code embeddings.

Other models that have been instruction-tuned and are available for chat can
act as your techie assistant to help with providing advice, documenting and
explaining existing code, or translating code into other programming

languages – for the last task, they need to have been trained on enough
samples in these languages.

Please note that the approach taken here is a bit naïve; however, it is a good
way to get started, nonetheless. The discussion should serve as an
introductory overview of code generation with LLMs, from prompting
considerations to execution and real-world viability. Publicly available
models like GPT-3 can produce initial code from prompts, but the results
often require refinement before use, as issues like incorrect logic may
appear. Fine-tuning specifically for programming tasks significantly
improves control, accuracy, and task completion. Models trained on coding
prompts like StarCoder reliably generate valid code-matching prompts and
conventions. Smaller models are also capable options for lightweight code
generation.

Let’s now try to implement a feedback cycle for code development, where
we validate and run the code and change it based on feedback.

Automating software

development

In LangChain, we have several integrations for code execution, like
LLMMathChain , which executes Python code to solve math questions, and
BashChain , which executes Bash terminal commands, which can help with
system administration tasks. However, while useful for problem-solving,
these don’t address the larger software development process.

This approach of solving problems with code can, however, work quite
well, as we’ll see here:

from langchain.llms.openai import OpenAI
from langchain.agents import load_tools, initialize_agent, Agen
llm = OpenAI()
tools = load_tools(["python_repl"])
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_
result = agent("What are the prime numbers until 20?")
print(result)

We can see how the prime number calculations get processed quite well
under the hood between OpenAI’s LLM and the Python interpreter:

Entering new AgentExecutor chain...
I need to find a way to check if a number is prime
Action: Python_REPL
Action Input:
def is_prime(n):
 for i in range(2, n):
 if n % i == 0:
 return False
 return True
Observation:
Thought: I need to loop through the numbers to check if they ar
Action: Python_REPL
Action Input:
prime_numbers = []
for i in range(2, 21):
 if is_prime(i):
 prime_numbers.append(i)
Observation:
Thought: I now know the prime numbers until 20
Final Answer: 2, 3, 5, 7, 11, 13, 17, 19
Finished chain.
{'input': 'What are the prime numbers until 20?', 'output': '2,

We get to the right answer about the prime numbers. LLM can produce
correct prime number calculations. The code generation approach can work

for simple cases. But real-world software demands modular, well-structured
design with a separation of concerns.

To automate software creation rather than just problem-solving, we need
more sophisticated approaches. This could involve an interactive loop
where the LLM generates draft code, a human provides feedback steering it
toward readable, maintainable code, and the model refines its output
accordingly. The human developer provides high-level strategic guidance
while the LLM handles the grunt work of writing code.

The next frontier is developing frameworks that enable human-LLM
collaboration or – more generally – feedback loops for efficient, robust
software delivery. There are a few interesting implementations around for
this.

For example, the MetaGPT library approaches this with an agent
simulation, where different agents represent job roles in a company or IT
department:

from metagpt.software_company import SoftwareCompany
from metagpt.roles import ProjectManager, ProductManager, Archi
async def startup(idea: str, investment: float = 3.0, n_round:
 """Run a startup. Be a boss."""
 company = SoftwareCompany()
 company.hire([ProductManager(), Architect(), ProjectManager
 company.invest(investment)
 company.start_project(idea)
 await company.run(n_round=n_round)

This is an example from the MetaGPT documentation. You need to have
MetaGPT installed for this to work.

This is an inspiring use case of an agent simulation. Another library for
automated software development is llm-strategy by Andreas Kirsch, which
generates code for data classes using decorator patterns.

This table gives an overview of a few projects:

project maintainer description stars

GPT Engineer

https://git

hub.com/Ant

onOsika/gpt

-engineer

Anton Osika Generates full codebases
from prompts. Developer-
friendly workflow.

45600

MetaGPT

https://git

hub.com/gee

kan/MetaGPT

Alexander
Wu

Multiple GPT agents play
development roles based on
a team Standard Operating
Procedure (SOP).

30700

ChatDev

https://git

hub.com/Ope

nBMB/ChatDe

v

OpenBMB
(Open Lab
for Big
Model Base)

Multi-agent organization
that collaborates via
meetings.

17100

GPT Pilot

https://git

hub.com/Pyt

hagora-

Pythagora Human oversees step-by-
step coding toward
production apps.

14800

https://github.com/AntonOsika/gpt-engineer
https://github.com/geekan/MetaGPT
https://github.com/OpenBMB/ChatDev
https://github.com/Pythagora-io/gpt-pilot

io/gpt-

pilot

DevOpsGPT

https://git

hub.com/kua

fuai/DevOps

GPT

KuafuAI Converts requirements to
working software with
LLMs and DevOps.

5100

Code Interpreter
API

https://git

hub.com/shr

oominic/cod

einterprete

r-api/

Dominic
Bäumer

Executes Python from
prompts locally with
sandboxing.

3400

CodiumAI PR-
Agent

https://git

hub.com/Cod

ium-ai/pr-

agent

Codium Analyzes pull requests and
provides auto-review
commands.

2600

GPTeam

https://git

hub.com/101

101dotxyz Collaborative agents with
memory and reflection.

1400

https://github.com/Pythagora-io/gpt-pilot
https://github.com/kuafuai/DevOpsGPT
https://github.com/shroominic/codeinterpreter-api/
https://github.com/Codium-ai/pr-agent
https://github.com/101dotxyz/GPTeam

dotxyz/GPTe

am

CodeT

https://git

hub.com/mic

rosoft/Code

T/tree/main

/CodeT

Microsoft
Research

Generates code and tests.
Runs code against tests.

480

LangChain
Coder

https://git

hub.com/has

eeb-

heaven/Lang

Chain-Coder

Haseeb
Heaven

Web code
generation/completion with
OpenAI and Vertex AI.

58

Code-it

https://git

hub.com/Chu

loAI/code-

it

ChuloAI Iteratively refines code by
steering LLM prompts
based on execution.

46

Table 6.6: Overview of different LLM software development projects

The key steps involve the LLM breaking down the software project into
subtasks through prompts and then attempting to complete each step. For

https://github.com/101dotxyz/GPTeam
https://github.com/microsoft/CodeT/tree/main/CodeT
https://github.com/haseeb-heaven/LangChain-Coder
https://github.com/ChuloAI/code-it

example, prompts can instruct the model to set up directories, install
dependencies, write boilerplate code, and so on.

After executing each subtask, the LLM then assesses if it has completed
successfully. If not, it tries to debug the issue or reformulates the plan. This
feedback loop of planning, attempting, and reviewing allows it to iteratively
refine its process.

The code-It project by Paolo Rechia and GPT Engineer by Anton Osika
both follow a pattern as illustrated in this graph for Code-It (source:
https://github.com/ChuloAI/code-it):

Figure 6.6: Code-It control flow

https://github.com/ChuloAI/code-it

Many of these steps consist of specific prompts that are sent to LLMs with
instructions to break down the project or set up the environment. It’s quite
impressive to implement the full feedback loop with all the tools.

Automatic software development with LLMs can also be explored with
projects such as Auto-GPT or Baby-GPT. However, these systems often get
stuck in failure loops. The agent architecture is key to the robustness of the
system.

We can implement a simple feedback loop in various ways in LangChain,
for example, using the PlanAndExecute chain, a ZeroShotAgent , or
BabyAGI .

We’ve discussed the basics of these two agent architectures in Chapter 5,
Building a Chatbot like ChatGPT. Let’s go with PlanAndExecute , which is
quite common. In the code on GitHub, you can see different architectures to
try out.

The main idea is to set up a chain and execute it with the objective of
writing software, like this:

from langchain import OpenAI
from langchain_experimental.plan_and_execute import load_chat_p
llm = OpenAI()
planner = load_chat_planner(llm)
executor = load_agent_executor(
 llm,
 tools,
 verbose=True,
)
agent_executor = PlanAndExecute(
 planner=planner,
 executor=executor,
 verbose=True,
 handle_parsing_errors="Check your output and make sure it c
 return_intermediate_steps=True

)
agent_executor.run("Write a tetris game in python!")
Since I just want to show the idea here, I am omitting defining

There are a few more pieces to this implementation, but simple work like
this could already write some code, depending on the instructions that we
give.

One thing we need is clear instructions for a language model to write
Python code in a certain form – we can reference syntax guidelines, for
example:

from langchain import PromptTemplate, LLMChain, OpenAI
DEV_PROMPT = (
 "You are a software engineer who writes Python code given t
 "Come up with a python code for this task: {task}"
 "Please use PEP8 syntax and comments!"
)
software_prompt = PromptTemplate.from_template(DEV_PROMPT)
software_llm = LLMChain(
 llm=OpenAI(
 temperature=0,
 max_tokens=1000
),
 prompt=software_prompt
)

When using LLMs for code generation, it’s important to choose a model
architecture that is optimized for producing software code specifically.
Models trained on more general textual data may not reliably generate
syntactically correct and logically sound code. I’ve chosen a longer context,
so we don’t get cut off in the middle of a function, and a low temperature,
so it doesn’t get too wild.

We need an LLM that has seen many code examples during its training and
can thus generate coherent functions, classes, control structures, and so on.
Models like Codex, PythonCoder, and AlphaCode are designed for code
generation capabilities.

However, just generating raw code text is not sufficient. We also need to
execute the code to test it and provide meaningful feedback to the LLM.
This allows us to iteratively refine and improve the code quality.

For execution and feedback, the LLM itself does not have inherent
capabilities to save files, run programs, or integrate with external
environments. That’s where LangChain’s tools come in.

The tools argument to the executor allows specifying Python modules,
libraries, and other resources that can extend the LLM’s reach. For
example, we can use tools to write the code to file, execute it with different
inputs, capture the outputs, check correctness, analyze style, and more.

Based on the tool outputs, we can provide feedback to the LLM on which
parts of the code worked and which need improvement. The LLM can then
generate enhanced code incorporating this feedback.

Over multiple generations, the human-LLM loop allows for the creation of
well-structured, robust software that meets the desired specifications. The
LLM brings raw coding productivity while the tools and human oversight
ensure quality.

Let’s see how we can implement this – let’s define the tools argument as
promised:

from langchain.tools import Tool
from software_development.python_developer import PythonDevelop
software_dev = PythonDeveloper(llm_chain=software_llm)

code_tool = Tool.from_function(
 func=software_dev.run,
 name="PythonREPL",
 description=(
 "You are a software engineer who writes Python code giv
),
 args_schema=PythonExecutorInput
)

The PythonDeveloper class has all the logic about taking tasks given in any
form and translating them into code. The main idea is that it provides a
pipeline to go from natural language task descriptions to generated Python
code to executing that code safely, capturing the output, and validating that
it runs. The LLM chain powers the code generation while the
execute_code() method handles running it.

This environment enables automating the development cycle of coding and
testing from language specifications. The human provides the task and
validates the results while the LLM handles translating descriptions to code.
Here it goes:

class PythonDeveloper():
 """Execution environment for Python code."""
 def __init__(
 self,
 llm_chain: Chain,
):
 self. llm_chain = llm_chain
 def write_code(self, task: str) -> str:
 return self.llm_chain.run(task)
 def run(
 self,
 task: str,
) -> str:
 """Generate and Execute Python code."""
 code = self.write_code(task)

 try:
 return self.execute_code(code, "main.py")
 except Exception as ex:
 return str(ex)
 def execute_code(self, code: str, filename: str) -> str:
 """Execute a python code."""
 try:
 with set_directory(Path(self.path)):
 ns = dict(__file__=filename, __name__="__main__
 function = compile(code, "<>", "exec")
 with redirect_stdout(io.StringIO()) as f:
 exec(function, ns)
 return f.getvalue()

I am again leaving out a few pieces – the error handling in particular is very
simplistic here. In the implementation on GitHub, we can distinguish
various kinds of errors we are getting, such as these:

ModuleNotFoundError : This means that the code tries to work with
packages that we don’t have installed. I’ve implemented logic to install
these packages.
NameError : Using variable names that don’t exist.

SyntaxError : The parentheses in the code haven’t been closed or it is
not even code.
FileNotFoundError : The code relies on files that don’t exist. I’ve
found a few times that the code tried showing images that were made
up.
SystemExit : If something more dramatic happens and Python crashes.

I’ve implemented logic to install packages for ModuleNotFoundError , and
clearer messages for some of these problems. In the case of missing images,
we could add a generative image model to create them. Returning all this as

enriched feedback to the code generation results in increasingly specific
output such as this:

Write a basic tetris game in Python with no syntax errors, prope

The Python code itself gets compiled and executed in a subdirectory and we
redirect the output of the Python execution to capture it; this is implemented
as Python contexts.

When generating code using large language models, it is important to be
careful about running that code, especially on a production system. There
are several security risks involved:

The LLM could produce code with vulnerabilities or backdoors either
inadvertently due to its training or maliciously if adversarially
manipulated.
The generated code interacts directly with the underlying operating
system, allowing access to files, networks, and so on. It is not
sandboxed or containerized.
Bugs in the code could cause crashes or unwanted behavior on the host
machine.
Resource usage like CPU, memory, and disk could be unchecked.

So, essentially, any code executed from an LLM has significant power over
the local system. This makes security a major concern compared to running
code in isolated environments like notebooks or sandboxes.

There are tools and frameworks that can sandbox generated code and limit
its authority. For Python, options include RestrictedPython, pychroot,

setuptools’ DirectorySandbox, and codebox-api. These allow enclosing the
code in virtual environments or restricting access to sensitive OS functions.

Ideally, LLM-generated code should first be thoroughly inspected and its
resource usage profiled, vulnerabilities scanned, and functionality unit
tested before being run on production systems. We could implement safety
and style guardrails similar to what we discussed in Chapter 5, Building a
Chatbot like ChatGPT.

While sandboxing tools can provide additional protection, it’s best to be
cautious and only execute LLM code in disposable or isolated environments
until trust in the model is established. Risks like crashes, hacks, and data
loss from blindly running unverified code could be substantial. Safe
practices are crucial as LLMs become part of software pipelines.

With this out of the way, let’s define tools :

ddg_search = DuckDuckGoSearchResults()
tools = [
 codetool,
 Tool(
 name="DDGSearch",
 func=ddg_search.run,
 description=(
 "Useful for research and understanding background o
 "Input: an objective. "
 "Output: background information about the objective
)
)
]

An internet search is worth adding to ensure we are implementing
something related to our objective. When working with this tool, I’ve seen a

few implementations of Rock, Paper, Scissors instead of Tetris, so it’s
important to understand the objective.

When running our agent executor with the objective of implementing Tetris,
the results are a bit different every time. We can see the agent activity in the
intermittent results. Looking at this, I am observing searches for
requirements and game mechanics, and code is repeatedly being produced
and executed.

I find here that the pygame library is installed. The following code snippet
is not the final product, but it brings up a window:

This code is written in PEP8 syntax and includes comments to
Import the necessary modules
import pygame
import sys
Initialize pygame
pygame.init()
Set the window size
window_width = 800
window_height = 600
Create the window
window = pygame.display.set_mode((window_width, window_height))
Set the window title
pygame.display.set_caption('My Game')
Set the background color
background_color = (255, 255, 255)
Main game loop
while True:
 # Check for events
 for event in pygame.event.get():
 # Quit if the user closes the window
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit()
 # Fill the background with the background color
 window.fill(background_color)

 # Update the display
 pygame.display.update()

The code is not too bad in terms of syntax – I guess the prompt must have
helped. However, in terms of functionality, it’s very far from Tetris.

This implementation of a fully automated agent for software development is
still quite experimental. It’s also amazingly simple and basic, consisting
only of about 340 lines of Python, including the imports, which you can
find on GitHub.

I think a better approach could be to break down all the functionality into
functions and maintain a list of functions to call, which can be used in all
subsequent generations of code. An advantage to our approach is, however,
that it’s easy to debug, since all steps including searches and generated code
are written to a log file in the implementation.

We could also define additional tools such as a planner that breaks down the
tasks into functions. You can see this in the GitHub repo.

Finally, we could try a test-driven development approach or have a human
give feedback rather than a fully automated process.

LLMs can produce reasonable sets of test cases from high-level
descriptions. But human oversight is essential to catch subtle mistakes and
validate completeness. Generating implementation code first and then
deriving tests risks baking in incorrect behavior. The right flow is
specifying expected behavior, vetting test cases, and then creating code that
passes. The process works in small steps – generate a test, review and
enhance it, and use the final version’s changes to inform the next test or
code generation. Explicitly providing feedback helps the LLM improve
over iterations.

Summary

In this chapter, we’ve discussed LLMs for source code and how they can
help in developing software. There are quite a few areas where LLMs can
benefit software development, mostly as coding assistants. We’ve applied a
few models for code generation using naïve approaches and we’ve
evaluated them qualitatively. In programming, as we’ve seen, compiler
errors and results of code execution can be used to provide feedback.
Alternatively, we could have used human feedback or implemented tests.

We’ve seen how the suggested solutions seem superficially correct but
don’t perform the task or are full of bugs. However, we can get a sense that
– with the right architectural setup – LLMs could feasibly learn to automate
coding pipelines. This could have significant implications regarding safety
and reliability. As for now, human guidance on high-level design and
rigorous review seem indispensable to prevent subtle errors, and the future
likely involves collaboration between humans and AI.

We didn’t implement semantic code search in this chapter since it’s very
similar to the chatbot implementation in the previous chapter. In Chapter 7,
LLMs for Data Science, we’ll work with LLMs for applications in data
science and machine learning.

Questions

Please look to see if you can produce the answers to these questions from
memory. I’d recommend you go back to the corresponding sections of this
chapter if you are unsure about any of them:

1. What can LLMs do to help in software development?
2. How do you measure a code LLM’s performance on coding tasks?

3. Which code LLMs are available, both open- and closed-source?
4. How does the Reflexion strategy work?
5. What options do we have available to establish a feedback loop for

writing code?
6. What do you think is the impact of generative AI on software

development?

Join our community on

Discord

Join our community’s Discord space for discussions with the authors and
other readers:

https://packt.link/lang

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Chapter_06.xhtml
https://oceanofpdf.com/

7

LLMs for Data Science

This chapter is about how generative AI can automate data science.
Generative AI, in particular LLMs, has the potential to accelerate scientific
progress across various domains, especially by providing efficient analysis
of research data and aiding in literature review processes. A lot of the
current approaches that fall within the domain of Automated Machine
Learning (AutoML) can help data scientists increase their productivity and
make data science processes more repeatable. In this chapter, we’ll first
discuss how data science is affected by generative AI and then cover an
overview of automation in data science.

Next, we’ll discuss how we can use code generation and tools in diverse
ways to answer questions related to data science. This can come in the form
of doing a simulation or enriching our dataset with additional information.
Finally, we’ll shift the focus to the exploratory analysis of structured
datasets. We can set up agents to run SQL or tabular data in pandas. We’ll
see how we can ask questions about the dataset, statistical questions about
the data, or ask for visualizations.

Throughout the chapter, we’ll work on different approaches to doing data
science with LLMs, which you can find in the data_science directory in
the GitHub repository for this book at

https://github.com/benman1/generative_ai_with_lang

chain.

The main sections in this chapter are:

The impact of generative models on data science
Automated data science
Using agents to answer data science questions
Data exploration with LLMs

Before delving into how data science can be automated, let’s start by
discussing how generative AI will impact data science!

The impact of generative

models on data science

Generative AI and LLMs like GPT-4 have brought about significant
changes in the field of data science and analysis. These models, particularly
LLMs, can revolutionize all the steps involved in data science in many
ways, offering exciting opportunities for researchers and analysts.
Generative AI models, such as ChatGPT, can understand and generate
human-like responses, making them valuable tools for enhancing research
productivity.

Generative AI plays a crucial role in analyzing and interpreting research
data. These models can assist in data exploration, uncover hidden patterns
or correlations, and provide insights that may not be apparent through
traditional methods. By automating certain aspects of data analysis,
generative AI saves time and resources, allowing researchers to focus on
higher-level tasks.

https://github.com/benman1/generative_ai_with_langchain

Another area where generative AI can benefit researchers is in performing
literature reviews and identifying research gaps. ChatGPT and similar
models can summarize vast amounts of information from academic papers
or articles, providing a concise overview of existing knowledge. This helps
researchers identify gaps in the literature and guide their own investigations
more efficiently. We’ve looked at this aspect of using generative AI models
in Chapter 4, Building Capable Assistants.

Other data science use cases for generative AI are:

Automatically generating synthetic data: Generative AI can be used to
automatically generate synthetic data that can be used to train machine
learning models. This can be helpful for businesses that do not have
access to enormous amounts of real-world data.
Identifying patterns in data: Generative AI can be used to identify
patterns in data that would not be visible to human analysts. This can
be helpful for businesses that are looking to gain new insights from
their data.
Creating new features from existing data: Generative AI can be used to
create new features from existing data. This can be helpful for
businesses that are looking to improve the accuracy of their machine
learning models.

According to recent reports by the likes of McKinsey and KPMG, the
consequences of AI relate to what data scientists will work on, how they
will work, and who can work on data science tasks. The principal areas of
key impact include:

Democratization of AI: Generative models allow many more people to
leverage AI by generating text, code, and data from simple prompts.
This expands the use of AI beyond data scientists.

Increased productivity: By auto-generating code, data, and text,
generative AI can accelerate development and analysis workflows.
This allows data scientists and analysts to focus on higher-value tasks.

Innovation in data science: Generative AI is bringing about the ability
to explore data in new and more creative ways, and generate new
hypotheses and insights that would not have been possible with
traditional methods
Disruption of industries: New applications of generative AI could
disrupt industries by automating tasks or enhancing products and
services. Data teams will need to identify high-impact use cases.
Limitations remain: Current models still have accuracy limitations,
bias issues, and lack of controllability. Data experts are needed to
oversee responsible development.
Importance of governance: Rigorous governance over development
and ethical use of generative AI models will be critical to maintaining
stakeholder trust.
Changes to data science skills: Demand may shift from coding
expertise to abilities in data governance, ethics, translating business
problems, and overseeing AI systems.

Regarding the democratization and innovation of data science, more
specifically, generative AI is also having an impact on the way that data is
visualized. In the past, data visualizations were often static and two-
dimensional. However, generative AI can be used to create interactive and
three-dimensional visualizations that can help to make data more accessible
and understandable. This is making it easier for people to understand and
interpret data, which can lead to better decision-making.

Again, one of the biggest changes that generative AI is bringing about is the
democratization of data science. In the past, data science was a very
specialized field that required a deep understanding of statistics and
machine learning. However, generative AI is making it possible for people
with less technical expertise to create and use data models. This is opening
up the field of data science to a much wider range of people.

LLMs and generative AI can play a crucial role in automated data science
by offering several benefits:

Natural language interaction: LLMs allow for natural language
interaction, enabling users to communicate with the model using plain
English or other languages. This makes it easier for non-technical
users to interact with and explore the data using everyday language,
without requiring expertise in coding or data analysis.
Code generation: Generative AI can automatically generate code
snippets to perform specific analysis tasks during Exploratory Data
Analysis (EDA). For example, it can generate code such as SQL to
retrieve data, clean data, handle missing values, or create
visualizations. This feature saves time and reduces the need for manual
coding.
Automated report generation: LLMs can generate automated reports
summarizing the key findings of EDA. These reports provide insights
into various aspects of the dataset, such as statistical summary,
correlation analysis, feature importance, and so on, making it easier for
users to understand and present their findings.
Data exploration and visualization: Generative AI algorithms can
explore large datasets comprehensively and generate visualizations
that reveal underlying patterns, relationships between variables,

outliers, or anomalies in the data automatically. This helps users gain a
holistic understanding of the dataset without manually creating each
visualization.

Further, we could think that generative AI algorithms should be able to
learn from user interactions and adapt their recommendations based on
individual preferences or past behaviors. They improve over time through
continuous adaptive learning and user feedback, providing more
personalized and useful insights during automated EDA.

Finally, generative AI models can identify errors or anomalies in the data
during EDA by learning patterns from existing datasets (intelligent error
identification). They can detect inconsistencies and highlight potential
issues quickly and accurately.

Overall, LLMs and generative AI can enhance automated EDA by
simplifying user interaction, generating code snippets, identifying
errors/anomalies efficiently, automating report generation, facilitating
comprehensive data exploration, visualization creation, and adapting to user
preferences for more effective analysis of large and complex datasets.

However, while these models offer immense potential to enhance research
and aid in literature review processes, they should not be treated as
infallible sources. As we’ve seen earlier, LLMs work by analogy and
struggle with reasoning and math. Their strength is creativity, not accuracy,
and therefore, researchers must exercise critical thinking and ensure that the
outputs generated by these models are accurate, unbiased, and aligned with
rigorous scientific standards.

One notable example is Microsoft’s Fabric, which incorporates a chat
interface powered by generative AI. This allows users to ask data-related
questions using natural language and receive instant answers without

having to wait in a data request queue. By leveraging LLMs like OpenAI
models, Fabric enables real-time access to valuable insights.

Fabric stands out among other analytics products due to its comprehensive
approach. It addresses various aspects of an organization’s analytics needs
and provides role-specific experiences for different teams involved in the
analytics process, such as data engineers, warehousing professionals,
scientists, analysts, and business users.

With the integration of Azure OpenAI Service at every layer, Fabric
harnesses generative AI’s power to unlock the full potential of data.
Features like Copilot in Microsoft Fabric provide conversational language
experiences, allowing users to create dataflows, generate code or entire
functions, build machine learning models, visualize results, and even
develop custom conversational language experiences.

ChatGPT (and Fabric in extension) often produces incorrect SQL queries.
This is fine when used by analysts who can check the validity of the output
but a total disaster as a self-service analytics tool for non-technical business
users. Therefore, organizations must ensure that they have reliable data
pipelines in place and employ data quality management practices while
using Fabric for analysis.

While the possibilities of generative AI in data analytics are promising,
caution must be exercised. The reliability and accuracy of LLMs should be
verified using first-principles reasoning and rigorous analysis. While these
models have shown their potential in ad hoc analysis, idea generation
during research, and summarizing complex analyses, they may not always
be suitable as self-service analytical tools for non-technical users due to the
need for validation by domain experts.

Automated data science

Data science is a field that combines computer science, statistics, and
business analytics to extract knowledge and insights from data. Data
scientists use a variety of tools and techniques to collect, clean, analyze, and
visualize data. They then use this information to help businesses make
better decisions. The responsibilities of a data scientist are wide-ranging
and often involve multiple steps that vary depending on the specific role
and industry. Tasks include data collecting, cleaning, analyzing, and
visualizing. Data scientists are also tasked with building predictive models
to help in decision-making processes. All the tasks mentioned are crucial to
data science but can be time-consuming and complex.

Automating various aspects of the data science workflow allows data
scientists to focus more on creative problem-solving while enhancing
productivity. Recent tools are making different stages of the process more
efficient by enabling faster iterations and less manual coding for common
workflows. Some of the tasks for data science overlap with those of a
software developer that we talked about in Chapter 6, Developing Software
with Generative AI, namely, writing and deploying software, although with
a narrower focus, on models.

Data science platforms like KNIME, H2O, and RapidMiner provide unified
analytics engines to preprocess data, extract features, and build models.
LLMs integrated into these platforms, such as GitHub Copilot or Jupyter
AI, can generate code for data processing, analysis, and visualization based
on natural language prompts. Jupyter AI allows conversing with a virtual
assistant to explain code, identify errors, and create notebooks.

This screenshot from the documentation shows the chat feature, the
Jupyternaut chat (Jupyter AI):

Figure 7.1: Jupyter AI – Jupyternaut chat

It should be plain to see that having a chat like that at your fingertips to ask
questions, create simple functions, or change existing functions can be a
boon to data scientists.

Overall, automated data science can accelerate analytics and ML
application development. It allows data scientists to focus on higher-value
and creative aspects of the process. Democratizing data science for business
analysts is also a key motivation behind automating these workflows. In the
following sections, we’ll investigate different tasks in turn, and we’ll
highlight how generative AI can contribute to improving the workflow and
create efficiency gains in areas such as data collection, visualization and
EDA, preprocessing and feature engineering, and finally, AutoML. Let’s
look at each of these areas in more detail.

Data collection

Automated data collection is the process of collecting data without human
intervention. Automatic data collection can be a valuable tool for
businesses. It can help businesses to collect data more quickly and
efficiently, and it can free up human resources to focus on other tasks.

In the context of data science or analytics, we refer to ETL (extract,
transform, and load) as the process that not only takes data from one or
more sources (data collection) but also prepares it for specific use cases.

There are many ETL tools, including commercial ones such as AWS Glue,
Google Dataflow, Amazon Simple Workflow Service (SWF), dbt,
Fivetran, Microsoft SSIS, IBM InfoSphere DataStage, Talend Open Studio,
or open-source tools such as Airflow, Kafka, and Spark. In Python, there are
many more tools (too many to list them all), such as pandas for data
extraction and processing, and even celery and joblib, which can serve as
ETL orchestration tools.

In LangChain, there’s an integration with Zapier, which is an automation
tool that can be used to connect different applications and services. This can
be used to automate the process of data collection from a variety of sources.
LLMs offer an accelerated way to gather and process data, notably
excelling in the organization of unstructured datasets.

The best tool for automatic data collection will depend on the specific needs
of the business. Businesses should consider the type of data they need to
collect, the volume of data they need to collect, and the budget they have
available.

Visualization and EDA

EDA involves manually exploring and summarizing data to understand its
various aspects before performing machine learning tasks. It helps in
identifying patterns, detecting inconsistencies, testing assumptions, and
gaining insights. However, with the advent of large datasets and the need
for efficient analysis, automated EDA has become important.

Automated EDA and visualization refer to the process of using software
tools and algorithms to automatically analyze and visualize data, without
significant manual intervention. These tools provide several benefits. They
can speed up the data analysis process, reducing the time spent on tasks like
data cleaning, handling missing values, outlier detection, and feature
engineering. These tools also enable the more efficient exploration of
complex datasets by generating interactive visualizations that provide a
comprehensive overview of the data.

The use of generative AI in data visualization adds another dimension to
automated EDA by generating new visualizations based on user prompts,
making the visualization and interpretation of data even more accessible.

Preprocessing and feature

extraction

Automated data preprocessing can include tasks such as data cleaning, data
integration, data transformation, and feature extraction. It is related to the
transform step in ETL, so there’s a lot of overlap in tools and techniques.
Automated feature engineering, on the other hand, is becoming essential to
leveraging the full power of ML algorithms on complex real-world data.
This includes removing errors and inconsistencies from the data and
converting it into a format compatible with the analytical tools that will be
used.

During preprocessing and feature engineering, LLMs automate the
cleaning, integration, and transformation of data. The adoption of these
models promises to streamline processes, thereby improving privacy
management by minimizing human handling of sensitive information
during these stages. While boosting flexibility and performance in
preprocessing tasks, there remains a challenge in ensuring the safety and
interpretability of automatically engineered features, which may not be as
transparent as manually created ones. The gains in efficiency must not
undermine the need for checks against introducing inadvertent biases or
errors through automation.

AutoML

AutoML frameworks represent a noteworthy leap in the evolution of
machine learning. By streamlining the complete model development cycle,
including tasks such as data cleaning, feature selection, model training, and
hyperparameter tuning, AutoML frameworks significantly economize on

the time and effort customarily expended by data scientists. These
frameworks not only enhance the pace but also potentially elevate the
quality of machine learning models.

The basic idea of AutoML is illustrated in this diagram from the GitHub
repo of the mljar AutoML library (source:
https://github.com/mljar/mljar-supervised):

Figure 7.2: How AutoML works

Key to the value offered by AutoML systems is their contributory effect on
ease of use and productivity growth. Within typical developer
environments, these systems enable the rapid identification and
productionizing of machine learning models, simplifying both
comprehension and deployment processes. The genesis of these frameworks
can be traced back to innovations like Auto-WEKA. As one of the early
broad-framework attempts, developed at the University of Waikato, it was
penned in Java to automate the process for tabular data within the Weka
machine learning suite.

https://github.com/mljar/mljar-supervised

Since the release of Auto-Weka, the landscape has vastly diversified with
powerful frameworks such as auto-sklearn, autokeras, NASLib, Auto-
PyTorch, TPOT, Optuna, AutoGluon, and Ray (tune). Spawning across
various programming languages, these frameworks lend themselves to an
eclectic array of machine learning tasks. More contemporary AutoML
advancements have harnessed neural architecture search techniques to
encapsulate vast portions of the ML pipeline, including unstructured data
types like images, video, and audio. Solutions like Google AutoML, Azure
AutoML, and H2O’s offering are at the forefront of this revolution,
delivering capabilities that extend ML accessibility to individuals beyond
expert data scientists.

These modern solutions are equipped to adeptly deal with structured
formats such as tables and time series. By conducting elaborate
hyperparameter searches, their performance can meet or even surpass
manual interventions. Frameworks such as PyCaret facilitate training
multiple models concurrently with minimal code while maintaining a focus
on time series data through specialized projects like Nixtla’s StatsForecast
and MLForecast.

The attributes characterizing AutoML frameworks are manifold: they
provide deployment capacities wherein certain solutions enable direct
production embedding, especially cloud-based ones; others necessitate
exportation in formats compatible with platforms like TensorFlow. The
diversity in the data types handled is another facet, with a concentrated
focus on tabular datasets alongside deep learning frameworks catering to
assorted data varieties. Several frameworks highlight explainability as a
paramount feature – this is particularly pertinent where regulations or
reliability are at stake in industries like healthcare and finance. Monitoring

post-deployment is another operational feature to ensure sustained model
performance over time.

Despite recent advancements, users are confronted with typical drawbacks
associated with such automated systems. A “black-box” scenario emerges
quite frequently yielding difficulties in comprehending the internal
workings, which can impede problem debugging within AutoML models.
Moreover, while their impact through time savings and democratization of
ML practices makes machine learning more accessible for those without
extensive experience, their efficacy in automating ML tasks can face
limitations due to inherent task complexities.

AutoML has been revitalized with the inclusion of LLMs, as they bring
automation to tasks such as feature selection, model training, and
hyperparameter tuning. The impact on privacy is considerable; AutoML
systems that utilize generative models can create synthetic data, reducing
reliance on personal data repositories. In terms of safety, automated systems
must be designed with fail-safe mechanisms to prevent the propagation of
errors across successive layers of ML workflows. The flexibility offered by
AutoML through LLM integration improves competitive performance by
making it possible for non-experts to achieve expert-level model tuning.

With respect to ease of use, while AutoML with integrated LLMs offers
simplified interfaces for model development pipelines, users must grapple
with complex choices regarding model selection and evaluation.

As we’ll see in the next couple of sections, LLMs and tools can
significantly accelerate data science workflows, reduce manual effort, and
open up new analysis opportunities. As we’ve seen with Jupyter AI
(Jupyternaut chat) – and in Chapter 6, Developing Software with
Generative AI – there’s a lot of potential to increase efficiency by creating

software with generative AI (code LLMs). This is a good starting point for
the practical part of this chapter as we investigate the use of generative AI
in data science. Let’s start to use agents to run code or call other tools to
answer questions!

Using agents to answer data

science questions

Tools like LLMMathChain can be utilized to execute Python for answering
computational queries. We’ve already seen different agents with tools
before.

For instance, by chaining LLMs and tools, one can calculate mathematical
powers and obtain results effortlessly:

from langchain import OpenAI, LLMMathChain
llm = OpenAI(temperature=0)
llm_math = LLMMathChain.from_llm(llm, verbose=True)
llm_math.run("What is 2 raised to the 10th power?")

We should see something like this:

> Entering new LLMMathChain chain...
What is 2 raised to the 10th power?
2**10
numexpr.evaluate("2**10")
Answer: 1024
> Finished chain.
[2]:'Answer: 1024'

Such capabilities, while adept at delivering straightforward numerical
answers, are not as straightforward to integrate into conventional EDA

workflows. Other chains, like CPAL (CPALChain) and PAL (PALChain),
can tackle more complex reasoning challenges, mitigating the risks of
generative models producing implausible content; yet their practical
applications remain elusive in real-world scenarios.

With PythonREPLTool , we can create simple visualizations of toy data or
train with synthetic data, which can be nice for illustration or bootstrapping
a project. This is an example from the LangChain documentation:

from langchain.agents.agent_toolkits import create_python_agent
from langchain.tools.python.tool import PythonREPLTool
from langchain.llms.openai import OpenAI
from langchain.agents.agent_types import AgentType
agent_executor = create_python_agent(
 llm=OpenAI(temperature=0, max_tokens=1000),
 tool=PythonREPLTool(),
 verbose=True,
 agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
agent_executor.run(
 """Understand, write a single neuron neural network in PyTo
Take synthetic data for y=2x. Train for 1000 epochs and print e
Return prediction for x = 5"""
)

This demonstrates constructing a single-neuron neural network using
PyTorch, training it with synthetic data, and making predictions – all
performed directly on the user’s machine. However, caution is advised as
executing Python code without safeguards can pose security risks.

We get this output back, which includes a prediction:

Entering new AgentExecutor chain...
I need to write a neural network in PyTorch and train it on the
Action: Python_REPL

Action Input:
import torch
model = torch.nn.Sequential(
 torch.nn.Linear(1, 1)
)
loss_fn = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
Define the data
x_data = torch.tensor([[1.0], [2.0], [3.0], [4.0]])
y_data = torch.tensor([[2.0], [4.0], [6.0], [8.0]])
for epoch in range(1000): # Train the model
 y_pred = model(x_data)
 loss = loss_fn(y_pred, y_data)
 if (epoch+1) % 100 == 0:
 print(f'Epoch {epoch+1}: {loss.item():.4f}')
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
Make a prediction
x_pred = torch.tensor([[5.0]])
y_pred = model(x_pred)
Observation: Epoch 100: 0.0043
Epoch 200: 0.0023
Epoch 300: 0.0013
Epoch 400: 0.0007
Epoch 500: 0.0004
Epoch 600: 0.0002
Epoch 700: 0.0001
Epoch 800: 0.0001
Epoch 900: 0.0000
Epoch 1000: 0.0000
Thought: I now know the final answer
Final Answer: The prediction for x = 5 is y = 10.00.

Through iterative training displayed in verbose logs, users witness the
progressive reduction of loss over epochs until a satisfactory prediction is
attained. Despite this showcasing how a neural network learns and predicts

over time, scaling this approach in practice would necessitate more
sophisticated engineering efforts.

LLMs and tools can be useful if we want to enrich our data with category or
geographic information. For example, if our company offers flights from
Tokyo, and we want to know the distances of our customers from Tokyo,
we can use WolframAlpha as a tool. Here’s a simplistic example:

from langchain.agents import load_tools, initialize_agent
from langchain.llms import OpenAI
from langchain.chains.conversation.memory import ConversationBu
llm = OpenAI(temperature=0)
tools = load_tools(['wolfram-alpha'])
memory = ConversationBufferMemory(memory_key="chat_history")
agent = initialize_agent(tools, llm, agent="conversational-reac
agent.run(
 """How far are these cities to Tokyo?
* New York City
* Madrid, Spain
* Berlin
""")

Please make sure you’ve set the OPENAI_API_KEY and WOLFRAM_ALPHA_APPID
environment variables as discussed in Chapter 3, Getting Started with
LangChain. Here’s the output:

> Entering new AgentExecutor chain...
AI: The distance from New York City to Tokyo is 6760 miles. The
> Finished chain.
'
The distance from New York City to Tokyo is 6760 miles. The dist
Madrid, Spain to Tokyo is 8,845 miles. The distance from Berlin,

By combining LLMs with external tools like WolframAlpha, it’s possible to
perform more challenging data enrichment, such as calculating distances
between cities, such as from Tokyo to New York City, Madrid, or Berlin.
Such integrations could significantly enhance the utility of datasets used in
various business applications. Nonetheless, these examples address
relatively straightforward queries; deploying such implementations on a
larger scale demands more extensive engineering strategies beyond those
discussed.

However, we can give agents datasets to work with, and here is where it can
get immensely powerful when we connect more tools. Let’s ask and answer
questions about structured datasets!

Data exploration with LLMs

Data exploration is a crucial and foundational step in data analysis,
allowing researchers to gain a comprehensive understanding of their
datasets and uncover significant insights. With the emergence of LLMs like
ChatGPT, researchers can harness the power of natural language processing
to facilitate data exploration.

As we mentioned earlier, generative AI models such as ChatGPT have the
ability to understand and generate human-like responses, making them
valuable tools for enhancing research productivity. Asking our questions in
natural language and getting responses in digestible pieces and shapes can
be a great boost to analysis.

LLMs can help explore textual data and other forms of data, such as
numerical datasets or multimedia content. Researchers can leverage

ChatGPT’s capabilities to ask questions about statistical trends in numerical
datasets or even query visualizations for image classification tasks.

Let’s load up a dataset and work with that. We can quickly get a dataset
from scikit-learn:

from sklearn.datasets import load_iris
df = load_iris(as_frame=True)["data"]

The Iris dataset is well known – it’s a toy dataset, but it will help us
illustrate the capabilities of using generative AI for data exploration. We’ll
use a DataFrame in the following example. We can create a pandas
DataFrame agent now and we’ll see how easy it is to get simple stuff done!

from langchain.agents import create_pandas_dataframe_agent
from langchain import PromptTemplate
from langchain.llms.openai import OpenAI
PROMPT = (
 "If you do not know the answer, say you don't know.\n"
 "Think step by step.\n"
 "\n"
 "Below is the query.\n"
 "Query: {query}\n"
)
prompt = PromptTemplate(template=PROMPT, input_variables=["quer
llm = OpenAI()
agent = create_pandas_dataframe_agent(llm, df, verbose=True)

I’ve included instructions for the model to indicate uncertainty and to
follow a step-by-step thought process, with the aim of reducing
hallucinations. Now we can query our agent against the DataFrame:

agent.run(prompt.format(query="What's this dataset about?"))

We get the answer This dataset is about the measurements of some
type of flower , which is correct.

Let’s show how to get a visualization:

agent.run(prompt.format(query="Plot each column as a barplot!")

Here is the plot:

Figure 7.3: Iris dataset barplots

The plot is not perfect. The output can be finicky and depends on the llm
model parameter and on the instructions. In this case, I used
df.plot.bar(rot=0, subplots=True) . We might want to introduce more
tweaks, for example, to padding between the panels, the font size, or the
placement of the legend, to make this really nice.

We can also ask to see the distributions of the columns visually, which will
give us this neat plot:

Figure 7.4: Iris dataset boxplots

We can request the plot to use other plotting backends, such as Seaborn;
however, please note that these have to be installed.

We can also ask more questions about the dataset, like which row has the
biggest difference between petal length and petal width. We get the answer
with the intermediate steps as follows (shortened):

df['difference'] = df['petal length (cm)'] - df['petal width (c
df.loc[df['difference'].idxmax()]
Observation: sepal length (cm) 7.7
sepal width (cm) 2.8
petal length (cm) 6.7
petal width (cm) 2.0
difference 4.7
Name: 122, dtype: float64
Thought: I now know the final answer
Final Answer: Row 122 has the biggest difference between petal

I think that’s worth a pat on the back, LLM!

We could extend this example by adding more instructions to the prompt
about plotting, such as the sizes of plots.

It’s a bit harder to implement the same plotting logic in a Streamlit app,
because we need to use the plotting functionality in corresponding Streamlit
functions, for example, st.bar_chart() . However, this can be done as well.
You can find explanations for this on the Streamlit blog (Building a
Streamlit and scikit-learn app with ChatGPT).

What about statistical tests?

agent.run(prompt.format(query="Validate the following hypothesi

We get this response:

Thought: I should use a statistical test to answer this question
Action: python_repl_ast
Action Input: from scipy.stats import ks_2samp
Observation:
Thought: I now have the necessary tools to answer this question.
Action: python_repl_ast
Action Input: ks_2samp(df['petal width (cm)'], df['petal length
Observation: KstestResult(statistic=0.6666666666666666, pvalue=6
Thought: I now know the final answer
Final Answer: The p-value of 6.639808432803654e-32 indicates tha

That checks off the statistical test! We can ask complex questions about the
dataset with simple prompts in plain English.

There’s also the PandasAI library, which uses LangChain under the hood
and provides similar functionality. Here’s an example from the

documentation with an example dataset:

import pandas as pd
from pandasai.llm import OpenAI
from pandasai.schemas.df_config import Config
from pandasai import SmartDataframe
df = pd.DataFrame({
 "country": ["United States", "United Kingdom", "France", "G
 "gdp": [19294482071552, 2891615567872, 2411255037952, 34358
 "happiness_index": [6.94, 7.16, 6.66, 7.07, 6.38, 6.4, 7.23
})
smart_df = SmartDataframe(df, config=Config(llm=OpenAI()))
print(smart_df.chat("Which are the 5 happiest countries?"))

This will give us the requested result similar to before when we were using
LangChain directly. Please note that PandasAI is not part of the setup for
the book, so you’ll have to install it separately if you want to use it.

For data in SQL databases, we can connect with a SQLDatabaseChain . The
LangChain documentation shows this example:

from langchain.llms import OpenAI
from langchain.utilities import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
db = SQLDatabase.from_uri("sqlite:///../../../../notebooks/Chin
llm = OpenAI(temperature=0, verbose=True)
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
db_chain.run("How many employees are there?")

We are connecting to a database first. Then we can ask questions about the
data in natural language. This can also be quite powerful. An LLM will
create the queries for us. I would expect this to be particularly useful when
we don’t know about the schema of the database. The SQLDatabaseChain

can also check queries and autocorrect them if the use_query_checker
option is set.

By following the outlined steps, we have leveraged the impressive natural
language processing capabilities of LLMs for data exploration. Through
loading a dataset, such as the Iris dataset from scikit-learn, we can use an
LLM-powered agent to query about data specifics in accessible, everyday
language. The creation of a pandas DataFrame agent enabled simple
analysis tasks and visualization requests, demonstrating the AI’s capacity to
produce plots and specific data insights.

We can not only inquire about the nature of the dataset verbally but also
command the agent to generate visual representations such as barplots and
boxplots for EDA. Although these visualizations might require additional
fine-tuning for aesthetic refinement, they established a groundwork for
analysis. When delving into more nuanced requests, such as identifying
disparities between two data attributes, the agent adeptly added new
columns and located pertinent numerical differences, showing its practical
utility in drawing actionable conclusions.

Efforts extended beyond mere visualization as the application of statistical
tests was also explored through concise English prompts, resulting in
articulate interpretations of statistical operations like KS-tests performed by
the agent.

The capabilities of integrations aren’t limited to static datasets but extend to
dynamic SQL databases where an LLM can automate query generation,
even offering autocorrection for syntactical errors in SQL statements. This
capability particularly shines when schemas are unfamiliar.

Summary

Beginning with an examination of AutoML frameworks, this chapter
highlighted the value these systems bring to the entirety of the data science
pipeline, facilitating each stage from data preparation to model deployment.
We then considered how the integration of LLMs can further elevate
productivity and make data science more approachable for both technical
and non-technical stakeholders.

Diving into code generation, we saw parallels with software development,
as discussed in Chapter 6, Developing Software with Generative AI,
observing how tools and functions generated by LLMs can respond to
queries or enhance datasets through augmentation techniques. This included
leveraging third-party tools like WolframAlpha to add external data points
to existing datasets. Our exploration then shifted toward the use of LLMs
for data exploration, building upon the techniques for ingesting and
analyzing voluminous textual data detailed in Chapter 4, Building Capable
Assistants, on question answering. Here, our focus turned to structured
datasets, examining how SQL databases or tabular information could be
effectively analyzed through LLM-powered exploratory processes.

To sum up our exploration, it is clear that AI technologies, illustrated by
platforms such as ChatGPT plugins and Microsoft Fabric, hold
transformative potential for data analysis. However, despite the remarkable
strides in enabling and enhancing the work of data scientists through these
AI tools, the current state of AI technology isn’t at a point where it can
supplant human experts but rather augments their capabilities and broadens
their analytical toolset.

In the next chapter, we’ll focus on conditioning techniques to improve the
performance of LLMs through prompting and fine-tuning.

Questions

Please have a look to see if you can come up with the answers to these
questions from memory. I recommend you go back to the corresponding
sections of this chapter if you are unsure about any of them:

1. What steps are involved in data science?
2. Why would we want to automate data science/analysis?
3. How can generative AI help data scientists?
4. What kind of agents and tools can we use to answer simple questions?
5. How can we get an LLM to work with data?

Join our community on

Discord

Join our community’s Discord space for discussions with the authors and
other readers:

https://packt.link/lang

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Chapter_07.xhtml
https://oceanofpdf.com/

8

Customizing LLMs and

Their Output

This chapter is about techniques and best practices to improve the reliability
and performance of LLMs in certain scenarios, such as complex reasoning
and problem-solving tasks. This process of adapting a model for a certain
task or making sure that our model output corresponds to what we expect is
called conditioning. In this chapter, we’ll discuss fine-tuning and prompting
as methods for conditioning.

Fine-tuning involves training the pre-trained base model on specific tasks
or datasets relevant to the desired application. This process allows the
model to adapt, becoming more accurate and contextually relevant for the
intended use case.

On the other hand, by providing additional input or context at inference
time, LLMs can generate text tailored to a particular task or style. Prompt
engineering is significant in unlocking LLM reasoning capabilities, and
prompt techniques form a valuable toolkit for researchers and practitioners
working with LLMs. We’ll discuss and implement advanced prompt
engineering strategies like few-shot learning, tree-of-thought, and self-
consistency.

Throughout the chapter, we’ll work on fine-tuning and prompting with
LLMs. You can find the corresponding code in the GitHub repository for
the book at
https://github.com/benman1/generative_ai_with_lang

chain

The main sections in this chapter are:

Conditioning LLMs
Fine-tuning
Prompt engineering

Let’s start by discussing conditioning, why it’s important, and how we can
achieve it.

Conditioning LLMs

Pre-training an LLM on diverse data to learn patterns of language results in
a base model that has a broad understanding of diverse topics. While base
models such as GPT-4 can generate impressive text on a wide range of
topics, conditioning them can enhance their capabilities in terms of task
relevance, specificity, and coherence, and can guide the model’s behavior to
be in line with what is considered ethical and appropriate. In this chapter,
we’ll focus on fine-tuning and prompt techniques as two methods of
conditioning.

Conditioning refers to a collection of methods used to
direct the model’s generation of outputs. This includes not
only prompt crafting but also more systemic techniques,

https://github.com/benman1/generative_ai_with_langchain

such as fine-tuning the model on specific datasets to adapt
its responses to certain topics or styles persistently.

Conditioning techniques enable LLMs to comprehend and execute complex
instructions, delivering content that closely matches our expectations. This
ranges from off-the-cuff interactions to systematic training that orients a
model’s behavior toward reliable performance in specialist domains, like
legal consultation or technical documentation. Furthermore, part of
conditioning includes implementing safeguards to avert the production of
malicious or harmful content, such as incorporating filters or training the
model to avoid certain types of problematic outputs, thereby better aligning
it with desired ethical standards.

Alignment refers to the process and goal of training and
modifying LLMs so that their general behavior, decision-
making processes, and outputs conform to broader human
values, ethical principles, and safety considerations.

The two terms are not synonymous; while conditioning can
include fine-tuning and is focused on influencing the model
through various techniques at different layers of interaction,
alignment is concerned with the fundamental and holistic
calibration of the model’s behavior to human ethics and
safety standards.

Conditioning can be applied at different points in a model’s life cycle. One
strategy involves fine-tuning the model on data that represents the intended
use case to help the model specialize in that area. This method depends on
the availability of such data and the ability to integrate it into the training

process. Another method involves conditioning the model dynamically at
the time of inference, where the input prompt is tailored with additional
context to shape the desired output. This approach offers flexibility but can
add complexity to the model’s operation in live environments.

In the next section, I will summarize key methods for conditioning such as
fine-tuning and prompt engineering, discuss the rationale, and examine their
relative pros and cons.

Methods for conditioning

With the advent of large pre-trained language models like GPT-3, there has
been growing interest in techniques to adapt these models for downstream
tasks. As LLMs continue to develop, they will become even more effective
and useful for a broader range of applications, and we can expect future
advancements in fine-tuning and prompting techniques to help go even
further in complex tasks that involve reasoning and tool use.

Several approaches have been proposed for conditioning. Here is a table
summarizing the different techniques:

Stage Technique Examples

Training Data curation Training on diverse data

Objective function Careful design of training
objective

Architecture and
training process

Optimizing model
structure and training

Fine-tuning Task specialization Training on specific

datasets/tasks

Inference-time
conditioning

Dynamic inputs Prefixes, control codes,
and context examples

Human oversight Human-in-the-loop Human review and
feedback

Table 8.1: Steering generative AI outputs

Combining these techniques provides developers with more control over the
behavior and outputs of generative AI systems. The ultimate goal is to
ensure that human values are incorporated at all stages, from training to
deployment, to create responsible and aligned AI systems.

In this chapter, we emphasize fine-tuning and prompting, as they stand out
for their effectiveness and prevalence in the conditioning of LLMs. Fine-
tuning involves adjusting all parameters of a pre-trained model through
additional training on specialized tasks. This method is aimed at enhancing
model performance for particular objectives and is known to yield robust
results. However, fine-tuning can be resource-intensive, presenting a trade-
off between high performance and computational efficiency. To address
these limitations, we explore strategies like adapters and Low-Rank
Adaptation (LoRA), which introduce elements of sparsity or implement
partial freezing of parameters to lighten the burden.

Prompt-based techniques, on the other hand, offer a way to dynamically
condition LLMs at inference time. Through careful crafting of input
prompts and subsequent optimization and evaluations, these methods can
steer the behavior of LLMs in desired directions without the need for heavy
retraining. Prompts can be carefully designed to elicit specific behaviors or

to encapsulate particular knowledge areas, providing a versatile and
resource-savvy approach to model conditioning.

Moreover, we delve into the transformative role of Reinforcement
Learning with Human Feedback (RLHF) within fine-tuning processes,
where human feedback serves as a critical guide for the model’s learning
trajectory. RLHF has exhibited the potential to profoundly improve the
capabilities of language models like GPT-3, making fine-tuning an even
more impactful technique. By integrating RLHF, we harness the nuanced
understanding of human evaluators to further refine the model behavior,
ensuring outputs that are not only relevant and accurate but also align with
user intent and expectations.

All these different techniques for conditioning facilitate the development of
LLMs that are both high-performing and aligned with desired outcomes
across various applications. Let’s start off by discussing the reasons why
InstructGPT, which was trained through RLHF, has had such a
transformative impact.

Reinforcement learning with human

feedback

In their March 2022 paper, Ouyang and others from OpenAI demonstrated
using RLHF with Proximal Policy Optimization (PPO) to align LLMs,
like GPT-3, with human preferences.

RLHF is an online approach that fine-tunes LMs using human preferences.
It has three main steps:

1. Supervised pre-training: The LM is first trained via standard
supervised learning on human demonstrations.

2. Reward model training: A reward model is trained on human ratings
of LM outputs to estimate a reward.

3. RL fine-tuning: The LM is fine-tuned via reinforcement learning to
maximize the expected reward from the reward model using an
algorithm like PPO.

The main change, RLHF, allows incorporating nuanced human judgments
into language model training through a learned reward model. As a result,
human feedback can steer and improve language model capabilities beyond
standard supervised fine-tuning. This new model can be used to follow
instructions that are given in natural language, and it can answer questions
in a way that’s more accurate and relevant than GPT-3. InstructGPT
outperformed GPT-3 on user preference, truthfulness, and harm reduction,
despite having 100x fewer parameters.

Starting in March 2022, OpenAI started releasing the GPT-3.5 series
models, upgraded versions of GPT-3, which include fine-tuning with RLHF.

InstructGPT opened up new avenues to improve language models by
incorporating reinforcement learning from human feedback methods
beyond traditional fine-tuning approaches. RL training can be unstable and
computationally expensive; notwithstanding, its success inspired further
research into refining RLHF techniques, reducing data requirements for
alignment, and developing more powerful and accessible models for a wide
range of applications.

Low-rank adaptation

As LLMs become larger, it becomes difficult to train them on consumer
hardware, and deploying them for each specific task becomes expensive.
There are a few methods that reduce computational, memory, and storage

costs while improving performance in low-data and out-of-domain
scenarios.

Parameter-Efficient Fine-Tuning (PEFT) methods enable the use of small
checkpoints for each task, making the models more portable. This small set
of trained weights can be added on top of the LLM, allowing the same
model to be used for multiple tasks without replacing the entire model.

Low-Rank Adaptation (LoRA) is a type of PEFT, where the pre-trained
model weights are frozen. It introduces trainable rank decomposition
matrices into each layer of the Transformer architecture to reduce the
number of trainable parameters. LoRA achieves comparable model quality
compared to fine-tuning while having fewer trainable parameters and higher
training throughput.

The QLORA method is an extension of LoRA, which enables efficient fine-
tuning of large models by backpropagating gradients through a frozen 4-bit
quantized model into learnable low-rank adapters. This allows you to fine-
tune a 65B parameter model on a single GPU. QLORA models achieve
99% of ChatGPT performance on Vicuna, using innovations like new data
types and optimizers. QLORA reduces the memory requirements to fine-
tune a 65B parameter model from >780 GB to <48 GB, without affecting
runtime or predictive performance.

Quantization refers to techniques to reduce the numerical
precision of weights and activations in neural networks like
LLMs. The main purpose of quantization is to reduce the
memory footprint and computational requirements of large
models.

Some key points about the quantization of LLMs:

It involves representing weights and activations using
fewer bits than a standard single-precision floating
point (FP32). For example, weights could be quantized
to 8-bit integers.
This allows you to shrink a model size by up to 4x and
improve throughput on specialized hardware.
Quantization typically has a minor impact on model
accuracy, especially with re-training.
Common quantization methods include scalar, vector,
and product quantization, which quantize weights
separately or in groups.
Activations can also be quantized by estimating their
distribution and binning appropriately.
Quantization-aware training adjusts weights during
training to minimize quantization loss.
LLMs like BERT and GPT-3 have been shown to work
well with 4–8-bit quantization via fine-tuning.

In the next section, we’ll discuss methods to condition LLMs at inference
time, which include prompt engineering.

Inference-time conditioning

One commonly used approach is conditioning at inference time (an output
generation phase), where specific inputs or conditions are provided
dynamically to guide the output generation process. LLM fine-tuning may
not always be feasible or beneficial in certain scenarios:

Limited fine-tuning services: When models are only accessible
through APIs that lack or have restricted fine-tuning capabilities
Insufficient data: In cases where there is a lack of data for fine-
tuning, either for the specific downstream task or relevant application
domain
Dynamic data: In cases of applications with frequently changing data,
such as news-related platforms, fine-tuning models frequently
becomes challenging, leading to potential drawbacks
Context-sensitive applications: Dynamic and context-specific
applications like personalized chatbots cannot perform fine-tuning
based on individual user data

For conditioning at inference time, most commonly, we provide a textual
prompt or instruction at the beginning of the text generation process. This
prompt can be a few sentences or even a single word, acting as an explicit
indication of the desired output.

Some common techniques for inference-time conditioning include:

Prompt tuning: Providing natural language guidance for intended
behavior. Sensitive to prompt design.
Prefix tuning: Prepending trainable vectors to LLM layers.
Constraining tokens: Forcing inclusion/exclusion of certain words
Metadata: Providing high-level info like genre, target audience, and
so on

Prompts can facilitate generating text that adheres to specific themes, styles,
or even mimics a particular author’s writing style. These techniques involve
providing contextual information during inference time, such as for in-
context learning or retrieval augmentation.

An example of prompt tuning is prefixing prompts, where instructions like
“Write a child-friendly story about...” are prepended to the prompt. For
example, in chatbot applications, conditioning the model with user
messages helps it generate responses that are personalized and pertinent to
the ongoing conversation.

Further examples include prepending relevant documents to prompts to
assist LLMs with writing tasks (for example, news reports, Wikipedia
pages, and company documents), or retrieving and prepending user-specific
data (financial records, health data, and emails) before prompting an LLM
to ensure personalized answers. By conditioning LLM outputs on
contextual information at runtime, these methods can guide models without
relying on traditional fine-tuning processes.

Often, demonstrations are part of the instructions for reasoning tasks, where
few-shot examples are provided to induce the desired behavior. Powerful
LLMs, such as GPT-3, can solve tasks without further training through
prompting techniques. In this approach, the problem to be solved is
presented to the model as a text prompt, with some text examples of similar
problems and their solutions. The model must provide a completion of the
prompt via inference. Zero-shot prompting involves no solved examples,
while few-shot prompting includes a small number of examples of similar
(problem and solution) pairs.

It has been shown that prompting provides easy control over large frozen
models like GPT-4 and allows steering model behavior without extensive
fine-tuning.

Prompting enables conditioning models on new knowledge with low
overhead, but careful prompt engineering is needed for the best results. This
is what we’ll discuss as part of this chapter.

In prefix tuning, continuous task-specific vectors are trained and supplied to
models at inference time. Similar ideas have been proposed for adapter
approaches, such as parameter Efficient Transfer Learning (PELT) or
Ladder Side-Tuning (LST).

Conditioning at inference time can also happen during sampling, such as
grammar-based sampling, where the output can be constrained to be
compatible with certain well-defined patterns, such as a programming
language syntax.

In the next section, we’ll fine-tune a small open-source LLM (OpenLLaMa)
for Question Answering (QA) with PEFT and quantization, and we’ll
deploy it on Hugging Face.

Fine-tuning

As we discussed in the first section of this chapter, the goal of model fine-
tuning for LLMs is to optimize a model to generate outputs that are more
specific to a task and context than the original foundation model.

The need for fine-tuning arises because pre-trained LMs are designed to
model general linguistic knowledge, not specific downstream tasks. Their
capabilities manifest only when adapted to applications. Fine-tuning allows
pre-trained weights to be updated for target datasets and objectives. This
enables knowledge transfer from the general model while customizing it for
specialized tasks.

In general, there are three advantages of fine-tuning that are immediately
obvious to users of these models:

Steerability: The capability of models to follow instructions
(instruction-tuning)
Reliable output-formatting: This is important, for example, for API
calls/function calling)
Custom tone: This makes it possible to adapt the output style as
appropriate to the task and audience.
Alignment: The output of models should correspond to core values,
for example, concerning safety, security, and privacy considerations.

The idea of fine-tuning pre-trained neural networks originated in computer
vision research in the early 2010s. Howard and Ruder (2018) demonstrated
the effectiveness of fine-tuning models like ELMo and ULMFit on
downstream tasks. The seminal BERT model (Devlin and others., 2019)
established fine-tuning of pre-trained transformers as the de facto approach
in NLP.

In this section, we’ll fine-tune a model for question answering. This recipe
is not specific to LangChain, but we’ll point out a few customizations,
where LangChain could be applicable. You can find the code in the
notebooks directory in the GitHub repository for the book.

As a first step, we’ll set up fine-tuning with libraries and environment
variables.

Setup for fine-tuning

Fine-tuning consistently achieves strong results across tasks but requires
extensive computational resources. Therefore, it’s a good idea to do fine-
tuning in an environment where we can access powerful GPUs and memory
resources. We’ll run this on Google Colab instead of the local environment,

where we can run fine-tuning of LLMs free of charge (with only a few
restrictions).

Google Colab is a computation environment that provides
different means for hardware acceleration of computation
tasks such as Tensor Processing Units (TPUs) and
Graphical Processing Units (GPUs). These are available
both in free and professional tiers. For the task in this
section, the free tier is sufficient. You can sign into a Colab
environment at this URL:
https://colab.research.google.com/

Please make sure you set your Google Colab machine settings in the top
menu to TPU or GPU to make sure you have sufficient resources to run the
following code and that the training doesn’t take too long. We’ll install all
required libraries in the Google Colab environment – I am adding the
versions of these libraries that I’ve used to make our fine-tuning repeatable:

peft : PEFT (version 0.5.0)

trl : Proximal Policy Optimization (0.6.0)
bitsandbytes : k-bit optimizers and matrix multiplication routines,
needed for quantization (0.41.1)
accelerate : train and use PyTorch models with multi-GPU, TPU, and
mixed-precision (0.22.0)
transformers : Hugging Face transformers library with backends in
JAX, PyTorch, and TensorFlow (4.32.0)
datasets : community-driven open-source library of datasets (2.14.4)
sentencepiece : Python wrapper for fast tokenization (0.1.99)

https://colab.research.google.com/

wandb : for monitoring the training progress on Weights and Biases
(0.15.8)
langchain for loading the model back as a LangChain LLM after
training (0.0.273)

We can install these libraries from the Colab notebook as follows:

!pip install -U accelerate bitsandbytes datasets transformers p

To download and train models from Hugging Face, we need to authenticate
with the platform. Please note that if you want to push your model to
Hugging Face later, you need to generate a new API token with write
permissions on Hugging Face:
https://huggingface.co/settings/tokens

https://huggingface.co/settings/tokens

Figure 8.1: Creating a new API token on Hugging Face write permissions

We can authenticate from the notebook like this:

from huggingface_hub import notebook_login
notebook_login()

When prompted, paste your Hugging Face access token.

A note of caution before we start: when executing the code,
you need to log in to different services, so make sure you
pay attention when running the notebook!

Weights and Biases (W&B) is an MLOps platform that can help
developers monitor and document ML training workflows from end to end.
As mentioned earlier, we will use W&B to get an idea of how well the
training is working and if the model is improving over time. For W&B, we
need to name the project; alternatively, we can use wandb 's init() method:

import os
os.environ["WANDB_PROJECT"] = "finetuning"

To authenticate with W&B, you need to create a free account with them at
https://www.wandb.ai. You can find your API key on the Authorize
page: https://wandb.ai/authorize.

Again, we need to paste in our API token.

If the previous training run is still active – this could be from a previous
execution of the notebook if you are running it a second time – let’s make

https://www.wandb.ai/
https://wandb.ai/authorize

sure we start a new one! This will ensure that we get new reports and a
dashboard on W&B:

import wandb
if wandb.run is not None:
 wandb.finish()

Next, we’ll need to choose a dataset against which we want to optimize. We
can use lots of different datasets here that are appropriate for coding,
storytelling, tool use, SQL generation, grade-school math questions
(GSM8k), or many other tasks. Hugging Face provides a wealth of
datasets, which can be viewed at this URL:
https://huggingface.co/datasets. These cover a lot of
different and even the most niche tasks.

We can also customize our own dataset. For example, we can use
LangChain to set up training data. There are quite a few methods available
for filtering that could help reduce redundancy in the dataset. It would have
been appealing to show data collection as a practical recipe in this chapter.
However, because of the complexity, it is out of the scope of the book.

It might be harder to filter for quality from web data, but there are a lot of
possibilities. For code models, we could apply code validation techniques to
score segments as a quality filter. If the code comes from GitHub, we can
filter by stars or by stars by repo owner.

For texts in natural language, quality filtering is not trivial. Search engine
placement could serve as a popularity filter, since it’s often based on user
engagement with the content. Further, knowledge distillation techniques
could be tweaked as a filter by fact density and accuracy.

https://huggingface.co/datasets

In this recipe, we are fine-tuning for question-answering performance with
the Squad V2 dataset. You can see a detailed dataset description on Hugging
Face: https://huggingface.co/spaces/evaluate-
metric/squad_v2:

from datasets import load_dataset
dataset_name = "squad_v2"
dataset = load_dataset(dataset_name, split="train")
eval_dataset = load_dataset(dataset_name, split="validation")

We are taking both training and validation splits. The Squad V2 dataset has
a part that’s supposed to be used in training and another one in validation,
as we can see in the output of load_dataset(dataset_name) :

DatasetDict({
 train: Dataset({
 features: ['id', 'title', 'context', 'question', 'answe
 num_rows: 130319
 })
 validation: Dataset({
 features: ['id', 'title', 'context', 'question', 'answe
 num_rows: 11873
 })
})

We’ll use the validation splits for early stopping. Early stopping will allow
us to stop training when the validation error begins to degrade.

The Squad V2 dataset is composed of various features, which we can see
here:

{'id': Value(dtype='string', id=None),
 'title': Value(dtype='string', id=None),

https://huggingface.co/spaces/evaluate-metric/squad_v2

 'context': Value(dtype='string', id=None),
 'question': Value(dtype='string', id=None),
 'answers': Sequence(feature={'text': Value(dtype='string', id=
 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=

The basic idea in training is prompting the model with a question and
comparing the answer to the dataset. In the next section, we’ll use this setup
to fine-tune an open-source LLM.

Open-source models

We want a small model that we can run locally at a decent token rate.
LLaMa-2 models require signing a license agreement with your email
address and getting confirmed (which, to be fair, can be very fast), as it
comes with restrictions for commercial use. LLaMa derivatives such as
OpenLLaMa have performed quite well, as can be evidenced on the HF
leaderboard:
https://huggingface.co/spaces/HuggingFaceH4/open_l

lm_leaderboard

OpenLLaMa version 1 cannot be used for coding tasks, because of the
tokenizer. Therefore, let’s use v2! We’ll use a 3B parameter model, which
we’ll be able to use even on older hardware:

model_id = "openlm-research/open_llama_3b_v2"
new_model_name = f"openllama-3b-peft-{dataset_name}"

We can use even smaller models such as EleutherAI/gpt-neo-125m , which
can also give a particularly good compromise between resource use and
performance.

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Let’s load the model:

import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConf
bnb_config = BitsAndBytesConfig(
 load_in_4bit=True,
 bnb_4bit_quant_type="nf4",
 bnb_4bit_compute_dtype=torch.float16,
)
device_map="auto"
base_model = AutoModelForCausalLM.from_pretrained(
 model_id,
 quantization_config=bnb_config,
 device_map="auto",
 trust_remote_code=True,
)
base_model.config.use_cache = False

The Bits and Bytes configuration makes it possible to quantize our model in
8, 4, 3, or even 2 bits with a much-accelerated inference and lower memory
footprint, without incurring a big cost in terms of performance.

We are going to store model checkpoints on Google Drive; you need to
confirm your login to your Google account:

from google.colab import drive
drive.mount('/content/gdrive')

We’ll need to authenticate with Google for this to work.

We can set our output directory for model checkpoints and logs to our
Google Drive:

output_dir = "/content/gdrive/My Drive/results"

If you don’t want to use Google Drive, just set this to a directory on your
computer.

For training, we need to set up a tokenizer:

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remot
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"

Now, we’ll define our training configuration. We’ll set up LORA and other
training arguments:

from transformers import TrainingArguments, EarlyStoppingCallba
from peft import LoraConfig
More info: https://github.com/huggingface/transformers/pull/2
base_model.config.pretraining_tp = 1
peft_config = LoraConfig(
 lora_alpha=16,
 lora_dropout=0.1,
 r=64,
 bias="none",
 task_type="CAUSAL_LM",
)
training_args = TrainingArguments(
 output_dir=output_dir,
 per_device_train_batch_size=4,
 gradient_accumulation_steps=4,
 learning_rate=2e-4,
 logging_steps=10,
 max_steps=2000,
 num_train_epochs=100,
 evaluation_strategy="steps",
 eval_steps=5,

 save_total_limit=5,
 push_to_hub=False,
 load_best_model_at_end=True,
 report_to="wandb"
)

A few comments to explain some of these parameters are in order. The
push_to_hub argument means that we can push the model checkpoints to
the HuggingSpace Hub regularly during training. For this to work, you need
to set up the HuggingSpace authentication (with write permissions, as
mentioned). If we opt for this, as output_dir , we can use new_model_name .
This will be the repository name under which the model will be available
here on Hugging Face: https://huggingface.co/models.

Alternatively, as I’ve done here, you can save your model locally or in the
cloud, for example, in Google Drive in a directory. I’ve set max_steps and
num_train_epochs very high, because I’ve noticed that training can still
improve after many steps. Early stepping and a high number of maximum
training steps should help to get the model to provide higher performance.
For early stopping, we need to set evaluation_strategy as "steps" and
load_best_model_at_end=True .

eval_steps is the number of update steps between two evaluations.
save_total_limit=5 means that only the last five models are saved. Finally,
report_to="wandb" means that we’ll send training stats, some model
metadata, and hardware information to W&B, where we can look at graphs
and dashboards for each run.

The training can then use our configuration:

from trl import SFTTrainer
trainer = SFTTrainer(

https://huggingface.co/models

 model=base_model,
 train_dataset=dataset,
 eval_dataset=eval_dataset,
 peft_config=peft_config,
 dataset_text_field="question", # this depends on the datas
 max_seq_length=512,
 tokenizer=tokenizer,
 args=training_args,
 callbacks=[EarlyStoppingCallback(early_stopping_patience=20
)
trainer.train()

The training can take quite a while, even running on a TPU device.
Frequent evaluation slows the training down by a lot. If you disable the
early stopping, you can make this much faster.

We should see some statistics as the training progresses, but it’s nicer to
show the graph of performance, as we can see on W&B:

Figure 8.2: Fine-tuning training loss over time (steps)

After training is done, we can save the final checkpoint on disk for re-
loading:

trainer.model.save_pretrained(
 os.path.join(output_dir, "final_checkpoint"),
)

We can now share our final model with friends to brag about the
performance we’ve achieved by manually pushing to Hugging Face:

trainer.model.push_to_hub(
 repo_id=new_model_name
)

We can now load the model back using a combination of our Hugging Face
username and the repository name (the new model name). Let’s quickly
show how to use this model in LangChain. Usually, the peft model is
stored as an adapter, not as a full model; therefore, the loading is a bit
different:

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, p
from langchain.llms import HuggingFacePipeline
model_id = 'openlm-research/open_llama_3b_v2'
config = PeftConfig.from_pretrained("benji1a/openllama-3b-peft-
model = AutoModelForCausalLM.from_pretrained(model_id)
model = PeftModel.from_pretrained(model, "benji1a/openllama-3b-
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remot
tokenizer.pad_token = tokenizer.eos_token
pipe = pipeline(
 "text-generation",
 model=model,
 tokenizer=tokenizer,
 max_length=256
)
llm = HuggingFacePipeline(pipeline=pipe)

We’ve done everything so far on Google Colab, but we could equally
execute this locally; just note that you need to have the huggingface peft
library installed!

Commercial models

So far, we’ve shown how to fine-tune and deploy an open-source LLM.
Some commercial models can be fine-tuned on custom data as well. For
example, both OpenAI’s GPT-3.5 and Google’s PaLM model offer this
capability. This has been integrated with a few Python libraries.

With the Scikit-LLM library, this is only a few lines of code. We won’t go
through a full recipe in this section, but please look at the Scikit-LLM
library or the documentation of different cloud LLM providers to find all
the details. The Scikit-LLM library is not part of the setup that we discussed
in Chapter 3, Getting Started with LangChain, so you’d have to install it
manually. I’ve also not included the training data, X_train . You’d have to
come up with a training dataset yourself.

Fine-tuning a PaLM model for text classification can be done like this:

from skllm.models.palm import PaLMClassifier
clf = PaLMClassifier(n_update_steps=100)
clf.fit(X_train, y_train) # y_train is a list of labels
labels = clf.predict(X_test)

Similarly, you can fine-tune the GPT-3.5 model for text classification like
this:

from skllm.models.gpt import GPTClassifier
clf = GPTClassifier(
 base_model = "gpt-3.5-turbo-0613",

 n_epochs = None, # int or None. When None, will be dete
 default_label = "Random", # optional
)
clf.fit(X_train, y_train) # y_train is a list of labels
labels = clf.predict(X_test)

Interestingly, in the fine-tuning available on OpenAI, all inputs are passed
through a moderation system to make sure that the inputs are compatible
with safety standards.

This concludes fine-tuning. LLMs can be deployed and queried without any
task-specific tuning. By prompting, we can accomplish few-shot learning or
even zero-shot learning, as we’ll discuss in the next section.

Prompt engineering

Prompts are the instructions and examples we provide to language models
to steer their behavior. They are important for steering the behavior of
LLMs because they allow you to align the model outputs to human
intentions without expensive retraining. Carefully engineered prompts can
make LLMs suitable for a wide variety of tasks beyond what they were
originally trained for. Prompts act as instructions that demonstrate to the
LLM what the desired input-output mapping is.

Prompts consist of three main components:

Instructions that describe the task requirements, goals, and format of
input/output. They explain the task to the model unambiguously.
Examples that demonstrate the desired input-output pairs. They
provide diverse demonstrations of how different inputs should map to
outputs.

Input that the model must act on to generate the output.

The following figure shows a few examples of prompting different
language models (source: Pre-train, Prompt, and Predict - A Systematic
Survey of Prompting Methods in Natural Language Processing by Liu and
colleagues, 2021):

Figure 8.3: Prompt examples, particularly knowledge probing in close form, and summarization

Prompt engineering, also known as in-context learning, refers to techniques
to steer LLM behavior through carefully designed prompts, without
changing the model weights. The goal is to align the model outputs with
human intentions for a given task. Prompt tuning, on the other hand,
provides intuitive control over model behavior but is sensitive to the precise
wording and design of prompts, suggesting the need for carefully crafted
guidelines to achieve desired results. But what do good prompts look like?

The most important first step is to start simple and work iteratively. Begin
with concise, straightforward instructions and build up complexity
gradually as needed. Break complex tasks down into simpler sub-tasks. This
avoids overwhelming the model initially. Be as specific, descriptive, and
detailed as possible about the exact task and desired format of the output.
Providing relevant examples is highly effective in demonstrating the
required reasoning chains or output styles.

For complex reasoning tasks, prompting the model to explain its step-by-
step thought process leads to increased accuracy. Techniques like chain-of-
thought prompting guide the model to reason explicitly. Providing few-shot
examples further demonstrates the desired reasoning format. Problem
decomposition prompts that break down complex problems into smaller,
more manageable sub-tasks also improve reliability by enabling a more
structured reasoning process. Sampling multiple candidate responses and
picking the most consistent one helps reduce errors and inconsistencies,
compared to relying on a single-model output.

Instead of focusing on what not to do, clearly specify the desired actions
and outcomes. Direct, unambiguous instructions work best. Avoid imprecise
or vague prompts. Start simple, be specific, provide examples, prompt for
explanations, decompose problems, and sample multiple responses – these
are some best practices to steer LLMs effectively using careful prompt
engineering. With iteration and experimentation, prompts can be optimized
to improve reliability, even for complex tasks, and achieve a performance
often comparable to fine-tuning.

After learning about best practices, let’s look at a few prompt techniques,
from simple to increasingly more advanced!

Prompt techniques

Basic prompting methods include zero-shot prompting with just the input
text, and few-shot prompting with a few demonstration examples showing
the desired input-output pairs. Researchers have identified biases like
majority label bias and recency bias that contribute to variability in few-
shot performance. Careful prompt design through example selection,
ordering, and formatting can help mitigate these issues.

More advanced prompting techniques include instruction prompting, where
the task requirements are described explicitly rather than just demonstrated.
Self-consistency sampling generates multiple outputs and selects the one
that aligns best with the examples. Chain-of-Thought (CoT) prompting
generates explicit reasoning steps, leading to the final output. This is
especially beneficial for complex reasoning tasks. CoT prompts can be
manually written or generated automatically via methods like augment-
prune-select.

This table gives a brief overview of a few methods of prompting compared
to fine-tuning:

Technique Description Key Idea Performance
Considerations

Zero-Shot
Prompting

No examples
provided; rely on
the model’s
training

Leverages the
model’s pre-
training

Works for simple
tasks, but struggles
with complex
reasoning

Few-Shot
Prompting

Provides a few
demos of input

Shows desired
reasoning

Tripled accuracy
on grade-school

and desired
output

format math

CoT Prefix responses
with
intermediate
reasoning steps

Gives the
model space to
reason before
answering

Quadrupled
accuracy on a math
dataset

Least-to-
Most
Prompting

Prompts the
model for
simpler subtasks
first

Decomposes a
problem into
smaller pieces

Boosted accuracy
from 16% to
99.7% on some
tasks

Self-
Consistency

Picks the most
frequent answer
from multiple
samples

Increases
redundancy

Gained 1–24
percentage points
across benchmarks

Chain-of-
Density

Iteratively
creates dense
summaries by
adding entities

Generates rich,
concise
summaries

Improves
information
density in
summaries

Chain-of-
Verification
(CoV)

Verifies an initial
response by
generating and
answering
questions

Mimics human
verification

Enhances
robustness and
confidence

Active
Prompting

Picks uncertain
samples for

Finds effective
few-shot
examples

Improves few-shot
performance

human labeling
as examples

Tree-of-
Thought

Generates and
automatically
evaluates
multiple
responses

Allows
backtracking
through
reasoning
paths

Finds an optimal
reasoning route

Verifiers Trains a separate
model to
evaluate
responses

Filters out
incorrect
responses

Lifted grade-
school math
accuracy by ~20
percentage points

Fine-Tuning Fine-tunes on an
explanation
dataset generated
via prompting

Improves the
model’s
reasoning
abilities

73% accuracy on a
commonsense QA
dataset

Table 8.2: Prompting techniques for LLMs compared to fine-tuning

Some prompting techniques incorporate external information retrieval to
provide missing context to the LLM before generating the output. For open-
domain QA, relevant paragraphs can be retrieved via search engines and
incorporated into the prompt. For closed-book QA, few-shot examples with
an evidence-question-answer format work better than a QA format.

In the next few subsections, we’ll go through a few of the aforementioned
techniques. LangChain provides tools to enable advanced prompt
engineering strategies like zero-shot prompting, few-shot learning, chain-
of-thought, self-consistency, and tree-of-thought. All these techniques
described here enhance the accuracy, consistency, and reliability of LLMs’

reasoning capabilities on complex tasks by providing clearer instructions,
fine-tuning with targeted data, employing problem breakdown strategies,
incorporating diverse sampling approaches, integrating verification
mechanisms, and adopting probabilistic modeling frameworks.

You can find all the examples from this section in the prompting directory
in the GitHub repository for the book. Let’s start with the vanilla strategy:
we just ask for a solution.

Zero-shot prompting

Zero-shot prompting, as opposed to few-shot prompting, involves feeding
task instructions directly to an LLM without providing any demonstrations
or examples. This prompt tests the capabilities of the pre-trained model to
understand and follow the instructions:

from langchain import PromptTemplate
from langchain.chat_models import ChatOpenAI
model = ChatOpenAI()
prompt = PromptTemplate(input_variables=["text"], template="Cla
chain = prompt | model
print(chain.invoke({"text": "I hated that movie, it was terribl

This outputs the sentiment classification prompt with the input text, without
any examples:

content='The sentiment of this text is negative.' additional_kwa

Few-shot learning

Few-shot learning presents the LLM with just a few input-output examples
relevant to the task, without explicit instructions. This allows the model to
infer the intentions and goals purely from demonstrations. Carefully
selected, ordered, and formatted examples can improve the model’s
inference abilities. However, few-shot learning can be prone to biases and
variability across trials. Adding explicit instructions can make the intentions
more transparent to the model and improve robustness. Overall, prompts
combine the strengths of instructions and examples to maximize steering of
the LLM for the task at hand.

The FewShotPromptTemplate allows you to show the model just a few
demonstration examples of the task to prime it, without explicit
instructions.

Let’s extend the previous example for sentiment classification with few-
shot prompting. In this example, we want an LLM to categorize customer
feedback into Positive , Negative , or Neutral . We provide it with a few
examples:

examples = [{
 "input": "I absolutely love the new update! Everything work
 "output": "Positive",
 },{
 "input": "It's okay, but I think it could use more features
 "output": "Neutral",
 }, {
 "input": "I'm disappointed with the service, I expected muc
 "output": "Negative"
}]

We can use these examples in a prompt like this:

from langchain.prompts import FewShotPromptTemplate, PromptTemp
from langchain.chat_models import ChatOpenAI
example_prompt = PromptTemplate(
 template="{input} -> {output}",
 input_variables=["input", "output"],
)
prompt = FewShotPromptTemplate(
 examples=examples,
 example_prompt=example_prompt,
 suffix="Question: {input}",
 input_variables=["input"]
)
print((prompt | ChatOpenAI()).invoke({"input": " This is an exc

We should get the following output:

content='Positive' additional_kwargs={} example=False

You can expect the LLM to use these examples to guide its classification of
the new sentence. The few-shot method primes the model without extensive
training, relying instead on its pre-trained knowledge and the context
provided by the examples.

To choose examples tailored to each input, FewShotPromptTemplate can
accept a SemanticSimilarityExampleSelector , based on embeddings rather
than hardcoded examples. The SemanticSimilarityExampleSelector
automatically finds the most relevant examples for each input.

For many tasks, standard few-shot prompting works well, but there are
many other techniques and extensions when dealing with more complex
reasoning tasks.

Chain-of-thought prompting

CoT prompting aims to encourage reasoning by getting the model to
provide intermediate steps, leading to the definitive answer. This is done by
prefixing the prompt with instructions to show its thinking.

There are two variants of CoT, zero-shot and few-shot. In zero-shot CoT,
we just add the instruction “Let’s think step by step!” to the prompt.

When asking an LLM to reason through a problem, it is often more
effective to have it explain its reasoning before stating the final answer.
This encourages the LLM to logically think through the problem first,
rather than just guessing the answer and trying to justify it afterward.
Asking an LLM to explain its thought process aligns well with its core
capabilities.

For example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
reasoning_prompt = "{question}\nLet's think step by step!"
prompt = PromptTemplate(
 template=reasoning_prompt,
 input_variables=["question"]
)
model = ChatOpenAI()
chain = prompt | model
print(chain.invoke({
 "question": "There were 5 apples originally. I ate 2 apples.
}))

After running this, we get the reasoning process together with the result:

content='Step 1: Originally, there were 5 apples.\nStep 2: I ate

The preceding approach is also called zero-shot chain-of-thought.

Few-shot chain-of-thought prompting is a few-shot prompt, where the
reasoning is explained as part of the example solutions, with the idea to
encourage an LLM to explain its reasoning before deciding.

If we go back to the few-shot examples from earlier, we can extend them as
follows:

examples = [{
 "input": "I absolutely love the new update! Everything work
 "output": "Love and absolute works seamlessly are examples
 },{
 "input": "It's okay, but I think it could use more features
 "output": "It's okay is not an endorsement. The customer fu
 }, {
 "input": "I'm disappointed with the service, I expected muc
 "output": "The customer is disappointed and expected more.
}]

In these examples, the reasons for the decision are explained. This
encourages the LLM to give a similar result explaining its reasoning.

It has been shown that CoT prompting can lead to more accurate results;
however, this performance boost was found to be proportional to the size of
the model, and the improvements were negligible or even negative in
smaller models.

Self-consistency

With self-consistency prompting, the model generates multiple candidate
answers to a question. These are then compared against each other, and the
most consistent or frequent answer is selected as the final output. A good

example of self-consistency prompting with LLMs is in the context of fact
verification or information synthesis, where accuracy is paramount.

In the first step, we’ll create multiple solutions to a question or a problem:

from langchain import PromptTemplate, LLMChain
from langchain.chat_models import ChatOpenAI
solutions_template = """
Generate {num_solutions} distinct answers to this question:
{question}
Solutions:
"""
solutions_prompt = PromptTemplate(
 template=solutions_template,
 input_variables=["question", "num_solutions"]
)
solutions_chain = LLMChain(
 llm=ChatOpenAI(),
 prompt=solutions_prompt,
 output_key="solutions"
)

For the second step, we want to count the different answers. We can use an
LLM again:

consistency_template = """
For each answer in {solutions}, count the number of times it oc
Most frequent solution:
"""
consistency_prompt = PromptTemplate(
 template=consistency_template,
 input_variables=["solutions"]
)
consistency_chain = LLMChain(
 llm=ChatOpenAI(),
 prompt=consistency_prompt,

 output_key="best_solution"
)

Let’s put these two chains together with a SequentialChain :

from langchain.chains import SequentialChain
answer_chain = SequentialChain(
 chains=[solutions_chain, consistency_chain],
 input_variables=["question", "num_solutions"],
 output_variables=["best_solution"]
)

Let’s ask a simple question and check the answer:

print(answer_chain.run(
 question="Which year was the Declaration of Independence of
 num_solutions="5"
))

We should get a response like this:

1776 is the year in which the Declaration of Independence of the

We should get the right response based on the vote; however, of the five
responses we produced, three were wrong.

This approach leverages the model’s ability to reason and utilize internal
knowledge while reducing the risk of outliers or incorrect information, by
focusing on the most recurring answer, thus improving the overall
reliability of the response given by the LLM.

Tree-of-thought

In Tree-of-Thought (ToT) prompting, we generate multiple problem-
solving steps or approaches for a given prompt and then use the AI model to
critique them. The critique will be based on the model’s judgment of the
solution’s suitability to the problem.

There is actually an implementation now of ToT in the LangChain
experimental package; however, let’s walk through an instructive step-by-
step example of implementing ToT using LangChain.

First, we’ll define our four chain components with PromptTemplates . We
need a solution template, an evaluation template, a reasoning template, and
a ranking template.

Let’s first generate solutions:

solutions_template = """
Generate {num_solutions} distinct solutions for {problem}. Cons
Solutions:
"""
solutions_prompt = PromptTemplate(
 template=solutions_template,
 input_variables=["problem", "factors", "num_solutions"]
)

Let’s ask the LLM to evaluate these solutions:

evaluation_template = """
Evaluate each solution in {solutions} by analyzing pros, cons,
Evaluations:
"""
evaluation_prompt = PromptTemplate(
 template=evaluation_template,

 input_variables=["solutions"]
)

After this step, we want to reason a bit more about them:

reasoning_template = """
For the most promising solutions in {evaluations}, explain scen
Enhanced Reasoning:
"""
reasoning_prompt = PromptTemplate(
 template=reasoning_template,
 input_variables=["evaluations"]
)

Finally, we can rank these solutions given our reasoning so far:

ranking_template = """
Based on the evaluations and reasoning, rank the solutions in {
Ranked Solutions:
"""
ranking_prompt = PromptTemplate(
 template=ranking_template,
 input_variables=["enhanced_reasoning"]
)

Next, we create chains from these templates before we put the chains all
together:

from langchain.chains.llm import LLMChain
from langchain.chat_models import ChatOpenAI
solutions_chain = LLMChain(
 llm=ChatOpenAI(),
 prompt=solutions_prompt,
 output_key="solutions"

)
evalutation_chain = LLMChain(
 llm=ChatOpenAI(),
 prompt=evaluation_prompt,
 output_key="evaluations"
)
reasoning_chain = LLMChain(
 llm=ChatOpenAI(),
 prompt=reasoning_prompt,
 output_key="enhanced_reasoning"
)
ranking_chain = LLMChain(
 llm=ChatOpenAI(),
 prompt=ranking_prompt,
 output_key="ranked_solutions"
)

Please note how each output_key corresponds to an input_key in the
prompt of the following chain. Finally, we connect these chains into a
SequentialChain :

from langchain.chains import SequentialChain
tot_chain = SequentialChain(
 chains=[solutions_chain, evalutation_chain, reasoning_chain,
 input_variables=["problem", "factors", "num_solutions"],
 output_variables=["ranked_solutions"]
)
print(tot_chain.run(
 problem="Prompt engineering",
 factors="Requirements for high task performance, low token u
 num_solutions=3
))

Let’s run our tot_chain and see the printed output:

1. Train or fine-tune language models using datasets that are re
2. Develop or adapt reasoning algorithms and techniques to impro

3. Evaluate existing language models and identify their strength
4. Implement evaluation metrics to measure the reasoning perform
5. Iteratively refine and optimize the reasoning capabilities of
It is important to note that the ranking of solutions may vary d

I wholeheartedly agree with the suggestions. They show the strengths of
ToT. A lot of these topics are part of this chapter, while some will come up
in Chapter 9, Generative AI in Production, where we’ll discuss evaluating
LLMs and their performance.

This allows us to leverage the LLM at each stage of the reasoning process.
The ToT approach helps avoid dead ends by fostering exploration. If you
want to see more examples, in the LangChain cookbook, you can find a ToT
for playing sudoku.

Prompt design is highly significant for unlocking LLM reasoning
capabilities, and it offers the potential for future advancements in models
and prompting techniques. These principles and techniques form a valuable
toolkit for researchers and practitioners working with LLMs.

Summary

Conditioning allows steering generative AI to improve performance, safety,
and quality. In this chapter, the focus is on conditioning through fine-tuning
and prompting. In fine-tuning, the language model is trained on many
examples of tasks formulated as natural language instructions, along with
appropriate responses. This is often done through reinforcement learning
with human feedback; however, other techniques have been developed that
have been shown to produce competitive results with lower resource

footprints. In the first recipe of this chapter, we implemented fine-tuning of
a small open-source model for question answering.

There are many techniques for prompting that can improve the reliability of
LLMs in complex reasoning tasks, including step-by-step prompting,
alternate selection, inference prompts, problem decomposition, sampling
multiple responses, and employing separate verifier models. These methods
have been shown to enhance accuracy and consistency in reasoning tasks.
LangChain provides building blocks to unlock advanced prompting
strategies like few-shot learning, CoT, ToT, and others, as we’ve shown in
the examples.

In Chapter 9, Generative AI in Production, we’ll talk about the
productionization of generative AI and critical issues related to it, such as
evaluating LLM apps, deploying them to a server, and monitoring them.

Questions

I’d recommend that you go back to the corresponding sections of this
chapter if you are unsure about any of the answers to these questions:

1. What is conditioning, and what is alignment?
2. What are the different methods of conditioning, and how can we

distinguish them?
3. What is instruction tuning, and what is its importance?
4. Name a few fine-tuning methods.
5. What is quantization?
6. What is few-shot learning?
7. What is CoT prompting?
8. How does ToT work?

Join our community on

Discord

Join our community’s Discord space for discussions with the authors and
other readers:

https://packt.link/lang

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Chapter_08.xhtml
https://oceanofpdf.com/

9

Generative AI in

Production

As we’ve discussed in this book, LLMs have gained significant attention in
recent years due to their ability to generate human-like text. From creative
writing to conversational chatbots, these generative AI models have diverse
applications across industries. However, taking these complex neural
network systems from research to real-world deployment comes with
significant challenges.

So far, we’ve talked about models, agents, and LLM apps as well as
different use cases, but there are many issues that become important when
deploying these apps into production to engage with customers and to make
decisions that can have a significant financial impact. This chapter explores
the practical considerations and best practices for productionizing
generative AI, specifically LLM apps. Before we deploy an application,
performance and regulatory requirements need to be ensured, it needs to be
robust at scale, and finally monitoring has to be in place. Maintaining
rigorous testing, auditing, and ethical safeguards is essential for trustworthy
deployment. We’ll discuss evaluation and observability, and cover a broad
range of topics that encompass the governance and lifecycle management of
operationalized AI and decision models, including generative AI models.

While getting an LLM app ready for production, offline evaluation provides
a preliminary understanding of a model’s abilities in a controlled setting,
and when in production, observability offers continuing insights into its
performance in live environments. We’ll discuss a few tools for either case
and I’ll give examples. We’ll also discuss the deployment of LLM
applications and give an overview of available tools and examples for
deployment.

Throughout the chapter, we’ll work on practical examples with LLM apps,
which you can find in the GitHub repository for the book at
https://github.com/benman1/generative_ai_with_lang

chain.

The main sections of this chapter are:

How to get LLM apps ready for production
How to evaluate LLM apps
How to deploy LLM apps
How to observe LLM apps

Let’s start with an overview of what it means and involves to get an LLM
app ready for production!

How to get LLM apps ready

for production

Deploying LLM applications to production is intricate, encompassing
robust data management, ethical foresight, efficient resource allocation,
diligent monitoring, and alignment with behavioral guidelines. Practices to
ensure deployment readiness involve:

https://github.com/benman1/generative_ai_with_langchain

Data management: Rigorous attention to data quality is critical to
avoid biases that can emanate from imbalanced or inappropriate
training data. Substantial efforts in data curation and ongoing scrutiny
of model outputs are required to mitigate emerging biases.
Ethical deployment and compliance: LLM applications are
potentially capable of generating harmful content, thus necessitating
strict review processes, safety guidelines, and compliance with
regulations such as HIPAA, especially in sensitive sectors such as
healthcare.
Resource management: The resource demands of LLMs call for an
infrastructure that is both efficient and environmentally sustainable.
Innovation in infrastructure helps to reduce costs and address
environmental concerns tied to the energy demands of LLMs.
Performance management: Models must be continually monitored
for data drift—where changes in input data patterns can alter model
performance—and performance degradation over time. Detecting these
deviations necessitates prompt retraining or model adjustments.
Interpretability: To build trust and offer insight into the decision-
making processes of LLMs, interpretability tools are increasingly
important for users who need clarity on how model decisions are
reached.
Data security: Protecting sensitive information within LLM processes
is essential for privacy and compliance. Strong encryption measures
and stringent access controls bolster security measures.
Model behavior standards: Models must align with ethical guidelines
beyond basic functional performance—ensuring outputs are
constructive (helpful), innocuous (harmless), and trustworthy (honest).
This results in stability and societal acceptance.

Hallucination mitigation: Hallucinations refer to instances where
LLMs inadvertently generate or recall sensitive personal information
from their training data corpus in the outputs, despite no prompting for
such details in the input source—highlighting critical privacy concerns
and the need for mitigation strategies.

Essential recommendations for deploying LLM apps encompass an array of
practices aimed at mitigating technical challenges, improving performance,
and ensuring ethical integrity. First and foremost, it’s crucial to develop
standardized datasets with relevant benchmarks to test and measure model
capabilities, including the detection of regressions and alignment with
defined goals.

Metrics should be task-specific to gauge the model’s proficiency accurately.
There also needs to be a robust framework that includes ethical guidelines,
safety protocols, and review processes to prevent the generation and
dissemination of harmful content. Human reviewers serve as an essential
checkpoint in content validation and bring ethical discernment to AI
outputs, ensuring adherence across all contexts.

A forward-thinking UX can foster a transparent relationship with users
while reinforcing sensible use. This can include anticipating inaccuracies,
such as disclaimers on limitations, attributions, and collecting rich user
feedback.

To explain outputs, we should invest in interpretability methods that explain
how generative AI models arrive at their decisions. Visualizing attention
mechanisms or analyzing feature importance can peel back the layers of
complexity, which is particularly crucial for high-stakes industries such as
healthcare or finance.

We discussed hallucinations in Chapter 4, Building Capable Assistants.
Mitigation techniques include external retrieval and tool augmentation to
provide pertinent context, as we discussed in Chapter 5, Building a Chatbot
like ChatGPT, and Chapter 6, Developing Software with Generative AI, in
particular. There is a danger of models recalling private information, and
ongoing advances in methods spanning data filtering, architecture
adjustments, and inference techniques show promise in mitigating these
problems.

For security, we can strengthen role-based access policies, employ stringent
data encryption standards, adopt anonymization best practices where
feasible, and ensure continuous verification through compliance audits.
Security is a huge topic in the context of LLMs, however, we’ll focus on
evaluation, observability, and deployment in this chapter.

We need to optimize infrastructure and resource usage by employing
distributed techniques such as data parallelism or model parallelism to
facilitate workload distribution across multiple processing units. We can
employ techniques such as model compression or other computer
architectural optimizations for more efficient deployment regarding
inference speed and latency management. Techniques such as model
quantization, discussed in Chapter 8, Customizing LLMs and Their Output,
or model distillation can also help reduce the resource footprint of the
model. Further, storing model outputs can reduce latency and costs for
repeated queries.

With insightful planning and preparation, generative AI promises to
transform industries from creative writing to customer service. But
thoughtfully navigating the complexities of these systems remains critical
as they continue to permeate increasingly diverse domains. This chapter

aims to provide a practical guide to some of the pieces that we haven’t
covered in this book so far, aiming to help you build impactful and
responsible generative AI applications. We cover strategies for data
curation, model development, infrastructure, monitoring, and transparency.

Before we continue our discussion, a few words on terminology are in
order. Let’s start by introducing MLOps and similar terms, and define what
they mean and imply.

Terminology

MLOps is a paradigm that focuses on deploying and maintaining machine
learning models in production reliably and efficiently. It combines the
practices of DevOps with machine learning to transition algorithms from
experimental systems to production systems. MLOps aims to increase
automation, improve the quality of production models, and address business
and regulatory requirements.

LLMOps is a specialized sub-category of MLOps. It refers to the
operational capabilities and infrastructure necessary for fine-tuning and
operationalizing LLMs as part of a product. While it may not be drastically
different from the concept of MLOps, the distinction lies in the specific
requirements connected to handling, refining, and deploying massive
language models such as GPT-3, which houses 175 billion parameters.

The term LMOps is more inclusive than LLMOps as it encompasses
various types of language models, including both LLMs and smaller
generative models. This term acknowledges the expanding landscape of
language models and their relevance in operational contexts.

Foundational Model Orchestration (FOMO) specifically addresses the
challenges faced when working with foundation models, that is, models
trained on broad data that can be adapted to a wide range of downstream
tasks. It highlights the need for managing multi-step processes, integrating
with external resources, and coordinating the workflows involving these
models.

The term ModelOps focuses on the governance and lifecycle management
of AI and decision models as they are deployed. Even more broadly,
AgentOps involves the operational management of LLMs and other AI
agents, ensuring their appropriate behavior, managing their environment
and resource access, and facilitating interactions between agents while
addressing concerns related to unintended outcomes and incompatible
objectives.

While FOMO emphasizes the unique challenges of working specifically
with foundational models, LMOps provides a more inclusive and
comprehensive coverage of a wider range of language models beyond just
the foundational ones. LMOps acknowledges the versatility and increasing
importance of language models in various operational use cases, while still
falling under the broader umbrella of MLOps. Finally, AgentOps explicitly
highlights the interactive nature of agents consisting of generative models
operating with certain heuristics and includes tools.

The emergence of all of these very specialized terms underscores the rapid
evolution of the field; however, their long-term prevalence is unclear.
MLOps is widely used and often encompasses the many more specialized
terms we just covered. Therefore, we’ll stick to MLOps for the remainder of
this chapter.

Before productionizing any LLM app, we should first evaluate its output, so
we should start with this. We will focus on the evaluation methods provided
by LangChain.

How to evaluate LLM apps

The crux of LLM deployment lies in the meticulous curation of training
data to preempt biases, implementing human-led annotation for data
enhancement, and establishing automated output monitoring systems.
Evaluating LLMs either as standalone entities or in conjunction with an
agent chain is crucial to ensure they function correctly and produce reliable
results, and this is an integral part of the ML lifecycle. The evaluation
process determines the performance of the models in terms of effectiveness,
reliability, and efficiency.

The goal of evaluating LLMs is to understand their strengths and
weaknesses, enhancing accuracy and efficiency while reducing errors,
thereby maximizing their usefulness in solving real-world problems. This
evaluation process typically occurs offline during the development phase.
Offline evaluations provide initial insights into model performance under
controlled test conditions and include aspects such as hyperparameter
tuning and benchmarking against peer models or established standards.
They offer a necessary first step toward refining a model before
deployment.

While human assessments are sometimes seen as the gold standard, they are
hard to scale and require careful design to avoid bias from subjective
preferences or authoritative tones. There are many standardized benchmarks
such as MBPP to test basic programming skills, while GSM8K is utilized
for multi-step mathematical reasoning. API-Bank evaluates models’

aptitudes for making decisions about API calls. ARC puts models’ question-
answering abilities up against complex integrations of information, whereas
HellaSwag assesses common-sense reasoning in physical situations using
adversarial filtering.

HumanEval focuses on code generation’s functional correctness over
syntactic similarity. MMLU assesses language understanding across a wide
range of subjects at varying depths, indicating proficiency in specialized
domains. SuperGLUE takes GLUE a step further with more challenging
tasks to monitor the fairness and comprehension of language models.
TruthfulQA brings a unique angle by benchmarking the truthfulness of
LLM responses, foregrounding the significance of veracity.

Benchmarks such as MATH demand high-level reasoning capability
evaluations. GPT-4’s performance on this benchmark varies with prompting
method sophistication, from few-shot prompts to reinforcement learning
with reward modeling approaches. Notably, dialog-based fine-tuning can
sometimes detract from capabilities assessed by measures such as MMLU.

Evaluations can provide insights into how well an LLM generates outputs
that are relevant, accurate, and helpful. Tests such as FLAN and FLASK
stress behavioral dimensions, thus prioritizing responsible AI systems
deployment. This chart compares several open and closed source models on
the FLASK benchmark (source: “FLASK: Fine-grained Language Model
Evaluation based on Alignment Skill Sets” by Ye and colleagues, 2023;
https://arxiv.org/abs/2307.10928):

https://arxiv.org/abs/2307.10928

Figure 9.1: Result of an evaluation with Claude as an evaluating language model

In the result reported in the chart, Claude is the LLM evaluating all outputs.
This skews results in favor of Claude and models similar to it. Often, GPT-
3.5 or GPT-4 are used as evaluators, which shows the OpenAI models
emerging as winners.

In LangChain, there are various ways to evaluate the outputs of LLMs,
including comparing chain outputs, pairwise string comparisons, string
distances, and embedding distances. The evaluation results can be used to
determine the preferred model based on the comparison of outputs.
Confidence intervals and p-values can also be calculated to assess the
reliability of the evaluation results.

LangChain provides several tools for evaluating the outputs of LLMs. A
common approach is to compare the outputs of different models or prompts
using PairwiseStringEvaluator . This prompts an evaluator model to

choose between two model outputs for the same input and aggregates the
results to determine an overall preferred model.

Other evaluators allow assessing model outputs based on specific criteria
such as correctness, relevance, and conciseness. The CriteriaEvalChain
can score outputs on custom or predefined principles without needing
reference labels. Configuring the evaluation model is also possible by
specifying a different chat model such as ChatGPT as the evaluator.

You can follow the code in this section online under the
monitoring_and_evaluation folder in the book’s GitHub project. Let’s
compare outputs of different prompts or LLMs with the
PairwiseStringEvaluator , which prompts an LLM to select the preferred
output given a specific input.

Comparing two outputs

This evaluation requires an evaluator, a dataset of inputs, and two or more
LLMs, chains, or agents to compare. The evaluation aggregates the results
to determine the preferred model.

The evaluation process involves several steps:

1. Create the evaluator: Load the evaluator using the load_evaluator()
function, specifying the type of evaluator (in this case,
pairwise_string).

2. Select the dataset: Load a dataset of inputs using the load_dataset()
function.

3. Define models to compare: Initialize the LLMs, chains, or agents to
compare using the necessary configurations. This involves initializing
the language model and any additional tools or agents required.

4. Generate responses: Generate outputs for each of the models before
evaluating them. This is typically done in batches to improve
efficiency.

5. Evaluate pairs: Evaluate the results by comparing the outputs of
different models for each input. This is often done using a random
selection order to reduce positional bias.

Here’s an example from the documentation for pairwise string comparisons:

from langchain.evaluation import load_evaluator
evaluator = load_evaluator("labeled_pairwise_string")
evaluator.evaluate_string_pairs(
 prediction="there are three dogs",
 prediction_b="4",
 input="how many dogs are in the park?",
 reference="four",
)

The output from the evaluator should look as follows:

 {'reasoning': "Both assistants provided a direct answer to
'value': 'B',
'score': 0
}

The evaluation result includes a score between 0 and 1, indicating the
effectiveness of each agent, sometimes along with reasoning that outlines
the evaluation process and justifies the score. In this specific example
against the reference, both results are factually incorrect based on the input.
We could remove the reference and let an LLM judge the outputs instead.

Comparing against criteria

LangChain provides several predefined evaluators for different evaluation
criteria. These evaluators can be used to assess outputs based on specific
rubrics or criteria sets. Some common criteria include conciseness,
relevance, correctness, coherence, helpfulness, and controversiality.

CriteriaEvalChain allows you to evaluate model outputs against custom or
predefined criteria. It provides a way to verify whether an LLM or chain’s
output complies with a defined set of criteria. You can use this evaluator to
assess correctness, relevance, conciseness, and other aspects of the
generated outputs.

CriteriaEvalChain can be configured to work with or without reference
labels. Without reference labels, the evaluator relies on the LLM’s predicted
answer and scores it based on the specified criteria. With reference labels,
the evaluator compares the predicted answer to the reference label and
determines its compliance with the criteria.

The evaluation LLM used in LangChain, by default, is GPT-4. However,
you can configure the evaluation LLM by specifying other chat models,
such as ChatAnthropic or ChatOpenAI, with the desired settings (for
example, temperature). The evaluators can be loaded with a custom LLM
by passing the LLM object as a parameter to the load_evaluator()
function.

LangChain supports both custom criteria and predefined principles for
evaluation. Custom criteria can be defined using a dictionary of
criterion_name: criterion_description pairs . These criteria can be used
to assess outputs based on specific requirements or rubrics.

Here’s a simple example:

custom_criteria = {
 "simplicity": "Is the language straightforward and unpreten
 "clarity": "Are the sentences clear and easy to understand?
 "precision": "Is the writing precise, with no unnecessary w
 "truthfulness": "Does the writing feel honest and sincere?"
 "subtext": "Does the writing suggest deeper meanings or the
}
evaluator = load_evaluator("pairwise_string", criteria=custom_c
evaluator.evaluate_string_pairs(
 prediction="Every cheerful household shares a similar rhyth
 prediction_b="Where one finds a symphony of joy, every domi
 " identical notes; yet, every abode of despair conducts a d
 " playing an elegy of grief that is peculiar and profound t
 input="Write some prose about families.",
)

We can get a very nuanced comparison of the two outputs, as this result
shows:

{'reasoning': 'Response A is simple, clear, and precise. It uses
and subtext, Response A is the better response.\n\n[[A]]', 'valu

Alternatively, you can use the predefined principles available in LangChain,
such as those from Constitutional AI. These principles are designed to
evaluate the ethical, harmful, and sensitive aspects of the outputs. The use
of principles in evaluation allows for a more focused assessment of the
generated text.

String and semantic

comparisons

LangChain supports string comparison and distance metrics for evaluating
LLM outputs. String distance metrics such as Levenshtein and Jaro provide
a quantitative measure of similarity between predicted and reference
strings. Embedding distances using models such as SentenceTransformers
calculates semantic similarity between the generated and expected texts.

Embedding distance evaluators can use embedding models, such as those
based on GPT-4 or Hugging Face embeddings, to compute vector distances
between the predicted and reference strings. This measures the semantic
similarity between the two strings and can provide insights into the quality
of the generated text.

Here’s a quick example from the documentation:

from langchain.evaluation import load_evaluator
evaluator = load_evaluator("embedding_distance")
evaluator.evaluate_strings(prediction="I shall go", reference="

The evaluator returns the score 0.0966466944859925. You can change the
embeddings used with the embeddings parameter in the load_evaluator()
call.

This often gives better results than older string distance metrics, but these
are also available and allow for simple unit testing and assessment of
accuracy. String comparison evaluators compare predicted strings against
reference strings or inputs.

String distance evaluators use distance metrics, such as the Levenshtein or
Jaro distance, to measure the similarity or dissimilarity between predicted
and reference strings. This provides a quantitative measure of how similar
the predicted string is to the reference string.

Finally, there’s an agent trajectory evaluator, where the
evaluate_agent_trajectory() method is used to evaluate the input,
prediction, and agent trajectory.

We can also use LangSmith, a companion project for LangChain that aims
to facilitate the passage of LLM apps from prototype to production, to
compare our performance against a dataset. Let’s step through an example!

Running evaluations against

datasets

As we’ve mentioned, comprehensive benchmarking and evaluation,
including testing, are critical for safety, robustness, and intended behavior.
We can run evaluations against benchmark datasets in LangSmith as we’ll
see now. First, please make sure you create an account on LangSmith here:
https://smith.langchain.com/.

You can obtain an API key and set it as LANGCHAIN_API_KEY in your
environment. We can also set environment variables for project ID and
tracing:

import os
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = "My Project"

This configures LangChain to log traces. If we don’t tell LangChain the
project ID, it will log against the default project. After this setup, when we
run our LangChain agent or chain, we’ll be able to see the traces on
LangSmith.

Let’s log a run!

https://smith.langchain.com/

from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI()
llm.predict("Hello, world!")

We can find all these runs on LangSmith. LangSmith lists all runs so far on
the LangSmith project page:
https://smith.langchain.com/projects

We can also find all runs via the LangSmith API:

from langsmith import Client
client = Client()
runs = client.list_runs()
print(runs)

We can list runs from a specific project or by run_type , for example,
chain . Each run comes with inputs and outputs, as runs[0].inputs and
runs[0].outputs , respectively.

We can create a dataset from existing agent runs with the
create_example_from_run() function – or from anything else. Here’s how
to create a dataset with a set of questions:

questions = [
 "A ship's parts are replaced over time until no original pa
 "If someone lived their whole life chained in a cave seeing
 "Is something good because it is natural, or bad because it
 "If a coin is flipped 8 times and lands on heads each time,
 "Present two choices as the only options when others exist.
 "Do people tend to develop a preference for things simply b
 "Is it surprising that the universe is suitable for intelli
 "If Theseus' ship is restored by replacing each plank, is i
 "Does doing one thing really mean that a chain of increasin
 "Is a claim true because it hasn't been proven false? Why c
]

https://smith.langchain.com/projects

shared_dataset_name = "Reasoning and Bias"
ds = client.create_dataset(
 dataset_name=shared_dataset_name, description="A few reason
)
for q in questions:
 client.create_example(inputs={"input": q}, dataset_id=ds.id

We can then define an LLM agent or chain on the dataset like this:

from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
llm = ChatOpenAI(model="gpt-4", temperature=0.0)
def construct_chain():
 return LLMChain.from_string(
 llm,
 template="Help out as best you can.\nQuestion: {input}\
)

To run an evaluation on a dataset, we can either specify an LLM or – for
parallelism – use a constructor function to initialize the model or LLM app
for each input. Now, to evaluate the performance against our dataset, we
need to define an evaluator as we saw in the previous section:

from langchain.smith import RunEvalConfig
evaluation_config = RunEvalConfig(
 evaluators=[
 RunEvalConfig.Criteria({"helpfulness": "Is the response
 RunEvalConfig.Criteria({"insightful": "Is the response
]
)

As seen, the criteria are defined by a dictionary that includes a criterion as a
key and a question to check for as the value.

We’ll pass a dataset together with the evaluation configuration with
evaluators to run_on_dataset() to generate metrics and feedback:

from langchain.smith import run_on_dataset
results = run_on_dataset(
 client=client,
 dataset_name=shared_dataset_name,
 dataset=dataset,
 llm_or_chain_factory=construct_chain,
 evaluation=evaluation_config
)

Similarly, we could pass a dataset and evaluators to run_on_dataset() to
generate metrics and feedback asynchronously.

We can view the evaluator feedback in the LangSmith UI to identify areas
for improvement:

Figure 9.2: Evaluators in LangSmith

We can click on any of these evaluations to see some detail, for example,
for the careful thinking evaluator, we get this prompt that includes the
original answer from the LLM:

You are assessing a submitted answer on a given task or input ba
[BEGIN DATA]

[Input]: Is something good because it is natural, or bad because

[Submission]: The argument that something is good because it is
example, many natural substances can be harmful or deadly, such

[Criteria]: insightful: Is the response carefully thought out?

[END DATA]
Does the submission meet the Criteria? First, write out in a ste

We get this evaluation:

The criterion is whether the response is insightful and carefull
The submission provides a clear and concise explanation of the "
Therefore, the submission does meet the criterion of being insig

A way to improve performance for a few types of problems is to use few-
shot prompting. LangSmith can help us with this as well. You can find more
examples of this in the LangSmith documentation.

We haven’t discussed data annotation queues, a new feature in LangSmith
that addresses a critical gap that emerges after prototyping. Each log can be
filtered by attributes such as errors to focus on problematic cases, or
manually reviewed and annotated with labels or feedback and edited as
needed. Edited logs can be added to a dataset for uses including fine-tuning
the model.

This concludes the topic of evaluation here. Now that we’ve evaluated our
agent, let’s say we are happy with the performance and have decided to
deploy it! What should we do next?

How to deploy LLM apps

Given the increasing use of LLMs in various sectors, it’s imperative to
understand how to effectively deploy models and apps into production.
Deployment services and frameworks can help to scale the technical
hurdles. There are lots of different ways to productionize LLM apps or
applications with generative AI.

Deployment for production requires research into, and knowledge of, the
generative AI ecosystem, which encompasses different aspects including:

Models and LLM-as-a-Service: LLMs and other models either run
on-premises or offered as an API on vendor-provided infrastructure.
Reasoning heuristics: Retrieval Augmented Generation (RAG), Tree-
of-Thought, and others.
Vector databases: Aid in retrieving contextually relevant information
for prompts.
Prompt engineering tools: These facilitate in-context learning
without requiring expensive fine-tuning or sensitive data.
Pre-training and fine-tuning: For models specialized for specific
tasks or domains.
Prompt logging, testing, and analytics: An emerging sector inspired
by the desire to understand and improve the performance of LLMs.
Custom LLM stack: A set of tools for shaping and deploying
solutions built on LLMs.

We discussed models in Chapter 1, What Is Generative AI? and Chapter 3,
Getting Started with LangChain, reasoning heuristics in Chapter 4,
Building Capable Assistants - Chapter 7, LLMs for Data Science, vector
databases in Chapter 5, Building a Chatbot like ChatGPT, and prompts and

fine-tuning in Chapter 8, Customizing LLMs and Their Output. In the
present chapter, we’ll focus on logging, monitoring, and custom tools for
deployment.

LLMs are typically utilized using external LLM providers or self-hosted
models. With external providers, computational burdens are shouldered by
companies such as OpenAI or Anthropic, while LangChain facilitates
business logic implementation. However, self-hosting open-source LLMs
can significantly decrease costs, latency, and privacy concerns.

Some tools with infrastructure offer the full package. For example, you can
deploy LangChain agents with Chainlit, creating ChatGPT-like UIs with
Chainlit. Key features include intermediary step visualization, element
management and display (images, text, carousel, and others), and cloud
deployment. BentoML is a framework that enables the containerization of
machine learning applications to use them as microservices running and
scaling independently with automatic generation of OpenAPI and gRPC
endpoints.

You can also deploy LangChain to different cloud service endpoints, for
example, an Azure Machine Learning online endpoint. With Steamship,
LangChain developers can rapidly deploy their apps, with features
including production-ready endpoints, horizontal scaling across
dependencies, persistent storage of app state, and multi-tenancy support.

LangChain AI, the company maintaining LangChain, is developing a new
library called LangServe. Built on top of FastAPI and Pydantic, it
streamlines documentation and deployment. Deployment is further
facilitated through integration with platforms including GCP’s Cloud Run
and Replit, allowing quick cloning from an existing GitHub repository.

Additional deployment instructions for other platforms will follow shortly
based on user input.

The following table summarizes the services and frameworks available for
deploying LLM applications:

Name Description Type

Streamlit Open-source Python framework for
building and deploying web apps

Framework

Gradio Lets you wrap models in an
interface and host on Hugging Face

Framework

Chainlit Build and deploy conversational
ChatGPT-like apps

Framework

Apache Beam Tool for defining and orchestrating
data processing workflows

Framework

Vercel Platform for deploying and scaling
web apps

Cloud
service

FastAPI Python web framework for building
APIs

Framework

Fly.io App hosting platform with
autoscaling and global CDN

Cloud
service

DigitalOcean App
Platform

Platform to build, deploy, and scale
apps

Cloud
service

Google Cloud Services such as Cloud Run to host
and scale containerized apps

Cloud
service

Steamship ML infrastructure platform for
deploying and scaling models

Cloud
service

Langchain-Serve Tool to serve LangChain agents as
web APIs

Framework

BentoML Framework for model serving,
packaging, and deployment

Framework

OpenLLM Provides open APIs to commercial
LLMs

Cloud
service

Databutton No-code platform to build and
deploy model workflows

Framework

Azure ML Managed MLOps service on Azure
for models

Cloud
service

LangServe Built on top of FastAPI, but
specialized for LLM app
deployment

Framework

Table 9.1: Services and frameworks for deploying LLM applications

All of these are well documented with different use cases, often directly
referencing LLMs. We’ve already shown examples with Streamlit and
Gradio, and we’ve discussed how to deploy them to the Hugging Face Hub
as an example.

There are a few main requirements for running LLM applications:

Scalable infrastructure to handle computationally intensive models and
potential spikes in traffic
Low latency for real-time serving of model outputs

Persistent storage for managing long conversations and app state
APIs for integration into end-user applications
Monitoring and logging to track metrics and model behavior

Maintaining cost efficiency can be challenging with large volumes of user
interactions and the high costs associated with LLM services. Strategies to
manage efficiency include self-hosting models, auto-scaling resource
allocations based on traffic, using spot instances, independent scaling, and
batching requests to better utilize GPU resources.

The choice of tools and the infrastructure determines trade-offs between
these requirements. Flexibility and ease is very important, because we want
to be able to iterate rapidly, which is vital due to the dynamic nature of ML
and LLM landscapes. It’s crucial to avoid getting tied to one solution. A
flexible, scalable serving layer that accommodates various models is key.
Model composition and cloud providers’ selection forms part of this
flexibility equation.

For the greatest degree of flexibility, Infrastructure as Code (IaC) tools
such as Terraform, CloudFormation, or Kubernetes YAML files can recreate
your infrastructure reliably and quickly. Moreover, continuous integration
and continuous delivery (CI/CD) pipelines can automate testing and
deployment processes to reduce errors and facilitate quicker feedback and
iteration.

Designing a robust LLM application service can be a complex task
requiring an understanding of the trade-offs and critical considerations
when evaluating serving frameworks. Leveraging one of these solutions for
deployment allows developers to focus on developing impactful AI
applications rather than infrastructure.

As mentioned, LangChain plays nicely with several open-source projects
and frameworks such as Ray Serve, BentoML, OpenLLM, Modal, and Jina.
In the next sections, we’ll deploy apps using different tools. We’ll start with
a chat service web server based on FastAPI.

FastAPI web server

FastAPI is a very popular choice for the deployment of web servers.
Designed to be fast, easy to use, and efficient, it is a modern, high-
performance web framework for building APIs with Python. Lanarky is a
small, open-source library for deploying LLM applications that provides
convenient wrappers around Flask API as well as Gradio for the
deployment of LLM applications. This means you can get a REST API
endpoint as well as the in-browser visualization at once and you only need a
few lines of code.

A Representational State Transfer Application
Programming Interface (REST API) is a set of rules and
protocols that allows different software applications to
communicate with each other over the internet. It follows
the principles of REST, which is an architectural style for
designing networked applications. A REST API uses HTTP
methods (such as GET, POST, PUT, or DELETE) to
perform operations on resources, and it typically sends and
receives data in a standardized format, such as JSON or
XML.

In the library documentation, there are several examples, including a
Retrieval QA with Sources Chain, a Conversational Retrieval app, and a
Zero Shot agent. Following another example, we’ll implement a chatbot
web server with Lanarky.

We’ll set up a web server using Lanarky that creates a ConversationChain
instance with an LLM model and settings, and defines routes for handling
HTTP requests. The full code for this recipe is available here:
https://github.com/benman1/generative_ai_with_lang

chain/tree/main/webserver

First, we’ll import the necessary dependencies, including FastAPI for
creating the web server and ConversationChain and ChatOpenAI from
LangChain for handling LLM conversations, along with some other
required modules:

from fastapi import FastAPI
from langchain import ConversationChain
from langchain.chat_models import ChatOpenAI
from lanarky import LangchainRouter
from starlette.requests import Request
from starlette.templating import Jinja2Templates

Please note that you need to set your environment variables as explained in
Chapter 3, Getting Started with LangChain. We can do this by importing
the setup_environment() method from the config module as we’ve seen in
many other examples before:

from config import set_environment
set_environment()

https://github.com/benman1/generative_ai_with_langchain/tree/main/webserver

Now we create a FastAPI app, which will take care of most of the routing,
except for LangChain specific requests that Lanarky will cover as we’ll see
later:

app = FastAPI()

We can create an instance of ConversationChain , specifying the LLM
model and its settings:

chain = ConversationChain(
 llm=ChatOpenAI(
 temperature=0,
 streaming=True,
),
 verbose=True,
)

The templates variable gets set to a Jinja2Templates class, specifying the
directory where templates are located for rendering. This specifies how the
webpage will be shown, allowing all kinds of customization:

templates = Jinja2Templates(directory="webserver/templates")

An endpoint for handling HTTP GET requests at the root path (/) is
defined using the FastAPI decorator @app.get . The function associated with
this endpoint returns a template response for rendering the index.html
template:

@app.get("/")
async def get(request: Request):
 return templates.TemplateResponse("index.html", {"request":

A router object is created as a LangChainRouter class. This object is
responsible for defining and managing the routes associated with the
ConversationChain instance. We can add additional routes to the router for
handling JSON-based chat that even work with WebSocket requests:

langchain_router = LangchainRouter(
 langchain_url="/chat", langchain_object=chain, streaming_mo
)
langchain_router.add_langchain_api_route(
 "/chat_json", langchain_object=chain, streaming_mode=2
)
langchain_router.add_langchain_api_websocket_route("/ws", langc
app.include_router(langchain_router)

Now our application knows how to handle requests made to the specified
routes defined within the router, directing them to the appropriate functions
or handlers for processing.

We will use Uvicorn to run our application. Uvicorn excels in supporting
high-performance, asynchronous frameworks such as FastAPI and Starlette.
It is known for its ability to handle a large number of concurrent
connections and performs well under heavy loads due to its asynchronous
nature.

We can run the web server from the terminal like this:

uvicorn webserver.chat:app –reload

This command starts a web server, which you can view in your browser, at
this local address: http://127.0.0.1:8000

The reload switch (--reload) is particularly handy, because it means the
server will be automatically restarted once you’ve made any changes.

Here’s a snapshot of the chatbot application we’ve just deployed:

Figure 9.3: Chatbot in Flask/Lanarky

I think this looks quite nice for what little work we’ve put in. It also comes
with a few nice features such as a REST API, a web UI, and a WebSocket
interface. While Uvicorn itself does not provide built-in load balancing
functionality, it can work together with other tools or technologies such as
Nginx or HAProxy to achieve load balancing in a deployment setup, which

distributes the incoming client requests across multiple worker processes or
instances. The use of Uvicorn with load balancers enables horizontal
scaling to handle large traffic volumes, improves response times for clients,
and enhances fault tolerance. Finally, Lanarky also plays nicely with
Gradio, so with a few extra lines we have this webserver running as a
Gradio app up and running.

In the next section, we’ll see how to build robust and cost-effective
generative AI applications with Ray. We’ll build a simple search engine
using LangChain for text processing and then use Ray for scaling indexing
and serving.

Ray

Ray provides a flexible framework to meet the infrastructure challenges of
complex neural networks in production by scaling out generative AI
workloads across clusters. Ray helps with common deployment needs such
as low-latency serving, distributed training, and large-scale batch inference.
Ray also makes it easy to spin up on-demand fine-tuning or scale existing
workloads from one machine to many. Its capabilities include:

Scheduling distributed training jobs across GPU clusters using Ray
Train
Deploying pre-trained models at scale for low-latency serving with
Ray Serve
Running large batch inference in parallel across CPUs and GPUs with
Ray Data
Orchestrating end-to-end generative AI workflows combining training,
deployment, and batch processing

We’ll use LangChain and Ray to build a simple search engine for the Ray
documentation following an example implemented by Waleed Kadous for
the anyscale Blog and on the langchain-ray repository on GitHub. This can
be found here: https://www.anyscale.com/blog/llm-open-
source-search-engine-langchain-ray

You can see this as an extension of the recipe in Chapter 5, Building a
Chatbot like ChatGPT. You’ll also see how to run this as a FastAPI server.
The full code for this recipe under semantic search is available here:
https://github.com/benman1/generative_ai_with_lang

chain/tree/main/search_engine.

First, we’ll ingest and index the Ray docs so we can quickly find relevant
passages for a search query:

Load the Ray docs using the LangChain loader
loader = RecursiveUrlLoader("docs.ray.io/en/master/")
docs = loader.load()
Split docs into sentences using LangChain splitter
chunks = text_splitter.create_documents(
 [doc.page_content for doc in docs],
 metadatas=[doc.metadata for doc in docs])
Embed sentences into vectors using transformers
embeddings = LocalHuggingFaceEmbeddings('multi-qa-mpnet-base-do
Index vectors using FAISS via LangChain
db = FAISS.from_documents(chunks, embeddings)

This builds our search index by ingesting the docs, splitting them into
chunks, embedding the sentences, and indexing the vectors. Alternatively,
we can accelerate the indexing by parallelizing the embedding step:

Define shard processing task
@ray.remote(num_gpus=1)

https://www.anyscale.com/blog/llm-open-source-search-engine-langchain-ray
https://github.com/benman1/generative_ai_with_langchain/tree/main/search_engine

def process_shard(shard):
 embeddings = LocalHuggingFaceEmbeddings('multi-qa-mpnet-base-
 return FAISS.from_documents(shard, embeddings)
Split chunks into 8 shards
shards = np.array_split(chunks, 8)
Process shards in parallel
futures = [process_shard.remote(shard) for shard in shards]
results = ray.get(futures)
Merge index shards
db = results[0]
for result in results[1:]:
 db.merge_from(result)

By running embedding on each shard in parallel, we can significantly
reduce the indexing time.

We save the database index to disk:

db.save_local(FAISS_INDEX_PATH)

FAISS_INDEX_PATH is an arbitrary file name. I’ve set it to faiss_index.db .

Next, we’ll see how we can serve search queries with Ray Serve:

Load index and embedding
db = FAISS.load_local(FAISS_INDEX_PATH)
embedding = LocalHuggingFaceEmbeddings('multi-qa-mpnet-base-dot
@serve.deployment
class SearchDeployment:
 def __init__(self):
 self.db = db
 self.embedding = embedding

 def __call__(self, request):
 query_embed = self.embedding(request.query_params["query"])
 results = self.db.max_marginal_relevance_search(query_embed
 return format_results(results)
deployment = SearchDeployment.bind()

Start service
serve.run(deployment)

This should load the index we generated and lets us serve search queries as
a web endpoint!

If we save this to a file called serve_vector_store.py , we can get the
server up and running using the following command from the
search_engine directory:

PYTHONPATH=../ python serve_vector_store.py

Running this command in the terminal gives me this output:

Started a local Ray instance.
View the dashboard at 127.0.0.1:8265

The message shows us the URL of the dashboard, which we can access in
the browser. The search server, however, is running on localhost on port
8080. We can query it from Python:

import requests
query = "What are the different components of Ray"
 " and how can they help with large language models (LL
response = requests.post("http://localhost:8000/", params={"que
print(response.text)

For me, the server fetches the Ray use cases page at:
https://docs.ray.io/en/latest/ray-overview/use-

cases.html

https://docs.ray.io/en/latest/ray-overview/use-cases.html

What I really liked was the monitoring with the Ray Dashboard, which
looks like this:

Figure 9.4: Ray Dashboard

This dashboard is very powerful as it can give you a whole bunch of
metrics and other information. Collecting metrics is easy, since all you must
do is set up and update variables of type Counter , Gauge , Histogram , and
others within the deployment object or actor. For time series charts, you
should have either Prometheus or the Grafana server installed.

This practical guide has taken you through the key steps of deploying an
LLM application locally using LangChain and Ray. We first ingested and
indexed documents to power a semantic search engine over the Ray
documentation. By leveraging Ray’s distributed capabilities, we parallelized
the intensive embedding task to accelerate the indexing time. We then
served the search application via Ray Serve, which provides a flexible
framework for low-latency querying. The Ray dashboard offered helpful
monitoring insights into metrics such as request rates, latencies, and errors.

As you can see in the full implementation on GitHub, we can also spin this
up as a FastAPI server. This concludes our simple semantic search engine
with LangChain and Ray.

As models and LLM apps grow more sophisticated and highly interwoven
into the fabric of business applications, observability and monitoring during
production become necessary to ensure their accuracy, efficiency, and
reliability is ongoing. The next section focuses on the significance of
monitoring LLMs and highlights key metrics to track for a comprehensive
monitoring strategy.

How to observe LLM apps

The dynamic nature of real-world operations means that the conditions
assessed during offline evaluations hardly cover all potential scenarios that
LLMs may encounter in production systems. Thus comes the need for
observability in production – a more continuous, real-time observation to
capture anomalies that offline tests could not anticipate.

We need to implement monitoring tools to track vital metrics regularly. This
includes user activity, response times, traffic volumes, financial
expenditures, model behavior patterns, and overall satisfaction with the app.
Ongoing surveillance allows for the early detection of anomalies such as
data drift or unexpected lapses in capabilities.

Observability allows monitoring behaviors and outcomes as the model
interacts with actual input data and users in production. It includes logging,
tracking, tracing, and alerting mechanisms to ensure healthy system
functioning, performance optimization, and catching issues such as model
drift early.

Tracking, tracing, and monitoring are three important
concepts in the field of software operation and management.
While all related to understanding and improving a system’s
performance, they each have distinct roles. While tracking
and tracing are about keeping detailed historical records for
analysis and debugging, monitoring is aimed at real-time
observation and immediate awareness of issues to ensure
optimal system functionality at all times. All three of these
concepts fall within the category of observability.

Monitoring is the ongoing process of overseeing the
performance of a system or application. This might involve
continuously collecting and analyzing metrics related to
system health such as memory usage, CPU utilization,
network latency, and the overall application/service
performance (such as response time). Effective monitoring
includes setting up alert systems for anomalies or
unexpected behaviors – sending notifications when certain
thresholds are exceeded. While tracking and tracing are
about keeping detailed historical records for analysis and
debugging, monitoring is aimed at real-time observation and
immediate awareness of issues to ensure optimal system
functionality at all times.

The chief aim for monitoring and observability is to provide insights into
LLM app performance and behavior through real-time data. This helps to
do the following:

Preventing model drift: LLM performance can degrade over time due
to changes in the characteristics of input data or user behavior. Regular
monitoring can identify such situations early and apply corrective
measures.
Performance optimization: By tracking metrics such as inference
times, resource usage, and throughput, you can make adjustments to
improve the efficiency and effectiveness of LLM apps in production.
A/B testing: Helps compare how slight differences in models may
result in different outcomes, which aids decision-making for model
improvements.
Debugging issues: Monitoring helps identify unforeseen problems that
can occur during runtime, enabling rapid resolution.
Avoiding hallucinations: We want to ensure the factual accuracy of
the response, and – if we are using RAG – retrieved context quality,
and sufficient effectiveness in using the context.
Ensuring appropriate behavior: Responses should be relevant,
complete, helpful, harmless, conform to the required format, and
follow the user’s intent.

Since there are so many ways to monitor, it’s important to come up with a
monitoring strategy. Some things you should consider when coming up with
a strategy are:

Metrics to monitor: Define key metrics of interest such as prediction
accuracy, latency, throughput, and others based on the desired model
performance.
Monitoring frequency: Frequency should be determined based on
how critical the model is to operations – a highly critical model may
require near real-time monitoring.

Logging: Logs should provide comprehensive details regarding every
relevant action performed by the LLM so analysts can track down any
anomalies.
Alerting mechanism: The system should raise alerts if it detects
anomalous behavior or drastic performance drops.

Monitoring LLMs and LLM apps in production serves multiple purposes,
including assessing model performance, detecting abnormalities or issues,
optimizing resource utilization, and ensuring consistent and high-quality
outputs. By continuously evaluating the behavior and performance of LLM
apps via validation, shadow launches, and interpretation along with
dependable offline evaluation, organizations can identify and mitigate
potential risks, maintain user trust, and provide an optimal experience.

When monitoring LLMs and LLM applications, organizations can rely on a
diverse set of metrics to gauge different aspects of performance and user
experience. Beyond the crucial metrics of tonality, toxicity, and
harmlessness, here is an expanded list that captures a wider range of
evaluation areas:

Inference latency: Measures the time it takes for the LLM app to
process a request and generate a response. Lower latency ensures a
faster and more responsive user experience.
Query per Second (QPS): Calculates the number of queries or
requests that the LLM can handle within a given time frame.
Monitoring QPS helps assess scalability and capacity planning.
Token per Second (TPS): Tracks the rate at which the LLM app
generates tokens. TPS metrics are useful for estimating computational
resource requirements and understanding model efficiency.

Token usage: The number of tokens correlates with the resource usage
such as hardware utilization, latency, and costs.
Error rate: Monitors the occurrence of errors or failures in LLM app
responses, ensuring error rates are kept within acceptable limits to
maintain the quality of outputs.
Resource utilization: Measures the consumption of computational
resources, such as the CPU, memory, and GPU, to reduce costs and
avoid bottlenecks.
Model drift: Detects changes in LLM app behavior over time by
comparing its outputs to a baseline or ground truth, ensuring the model
remains accurate and aligned with expected outcomes.
Out-of-distribution inputs: Identifies inputs or queries falling outside
the intended distribution of the LLM’s training data, which can cause
unexpected or unreliable responses.
User feedback metrics: Monitors user feedback channels to gather
insights on user satisfaction, identify areas for improvement, and
validate the effectiveness of the LLM app.

User engagement: We can track how users engage with our app; for
example, the frequency and duration of sessions or the usage of
specific features.
Tool/retrieval usage: Breakdown of the instances when retrieval and
tools are used.

This is just a small selection. This list can easily be extended with many
more metrics from Site Reliability Engineering (SRE) relating to task
performance or the behavior of the LLM app.

Data scientists and machine learning engineers should check for staleness,
incorrect learning, and bias using model interpretation tools such as LIME

and SHAP. The most predictive features changing suddenly could indicate a
data leak.

Offline metrics such as AUC do not always correlate with online impacts on
conversion rate, so it is important to find dependable offline metrics that
translate to online gains relevant to the business, ideally direct metrics such
as clicks and purchases that the system impacts directly.

Effective monitoring enables the successful deployment and utilization of
LLMs, boosting confidence in their capabilities and fostering user trust. It
should be cautioned, however, that you should study service providers’
privacy and data protection policies when relying on cloud service
platforms.

The full code for the recipes in this section are available on GitHub in the
monitoring_and_evaluation directory of the repository corresponding to
this book.

In the next section, we’ll start our journey into observability by monitoring
the trajectory of an agent.

Tracking responses

Tracking in this context refers to recording the full provenance of
responses, including the tools, retrievals, the included data, and the LLM
used in generating the output. This is key for auditing and reproducibility of
responses. We’ll use the terms tracking and tracing interchangeably in this
section.

Tracking generally refers to the process of recording and
managing information about a particular operation or series

of operations within an application or system. For example,
in machine learning applications or projects, tracking can
involve keeping a record of parameters, hyperparameters,
metrics, and outcomes across different experiments or runs.
It provides a way to document progress and changes over
time.

Tracing is a more specialized form of tracking. It involves
recording the execution flow through software/systems.
Particularly in distributed systems where a single
transaction might span multiple services, tracing helps in
maintaining an audit or breadcrumb trail, a detailed source
of information about that request path through the system.
This granular view enables developers to understand the
interaction between various microservices and troubleshoot
issues such as latency or failures by identifying exactly
where they occurred in the transaction path.

Tracking the trajectory of agents can be challenging due to their broad
range of actions and generative capabilities. LangChain comes with
functionality for trajectory tracking and evaluation, so seeing the traces of
an agent via LangChain is really easy! You just have to set the
return_intermediate_steps parameter to True when initializing an agent
or an LLM.

Let’s define a tool as a function. It’s convenient to re-use the function
docstring as a description of the tool. The tool first sends a ping to a website
address and returns information about packages transmitted and latency or –
in the case of an error – the error message:

import subprocess
from urllib.parse import urlparse
from pydantic import HttpUrl
from langchain.tools import StructuredTool
def ping(url: HttpUrl, return_error: bool) -> str:
 """Ping the fully specified url. Must include https:// in t
 hostname = urlparse(str(url)).netloc
 completed_process = subprocess.run(
 ["ping", "-c", "1", hostname], capture_output=True, text=Tr
)
 output = completed_process.stdout
 if return_error and completed_process.returncode != 0:
 return completed_process.stderr
 return output
ping_tool = StructuredTool.from_function(ping)

Now we set up an agent that uses this tool with an LLM to make the calls
given a prompt:

from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
llm = ChatOpenAI(model="gpt-3.5-turbo-0613", temperature=0)
agent = initialize_agent(
 llm=llm,
 tools=[ping_tool],
 agent=AgentType.OPENAI_MULTI_FUNCTIONS,
 return_intermediate_steps=True, # IMPORTANT!
)
result = agent("What's the latency like for https://langchain.c

The agent reports this:

The latency for https://langchain.com is 13.773 ms

In results["intermediate_steps"] , we can see a lot of information about
the agent’s actions:

[(_FunctionsAgentAction(tool='ping', tool_input={'url': 'https:/

By providing visibility into the system and aiding in problem identification
and optimization efforts, this kind of tracking and evaluation can be very
helpful.

The LangChain documentation demonstrates how to use a trajectory
evaluator to examine the full sequence of actions and responses they
generate and grade an OpenAI functions agent. That’s potentially very
powerful stuff!

Let’s have a look beyond LangChain and see what else is out there for
observability!

Observability tools

There are quite a few tools available as integrations in LangChain or
through callbacks:

Argilla: Argilla is an open-source data curation platform that can
integrate user feedback (human-in-the-loop workflows) with prompts
and responses to curate datasets for fine-tuning.
Portkey: Portkey adds essential MLOps capabilities like monitoring
detailed metrics, tracing chains, caching, and reliability through
automatic retries to LangChain.
Comet.ml: Comet offers robust MLOps capabilities for tracking
experiments, comparing models and optimizing AI projects.

LLMonitor: Tracks lots of metrics including cost and usage analytics
(user tracking), tracing, and evaluation tools (open-source).
DeepEval: Logs default metrics including relevance, bias, and toxicity.
Can also help with testing and monitoring model drift or degradation.
Aim: An open-source visualization and debugging platform for ML
models. It logs inputs, outputs, and the serialized state of components,
enabling visual inspection of individual LangChain executions and
comparing multiple executions side by side.
Argilla: An open-source platform for tracking training data, validation
accuracy, parameters, and more across machine learning experiments.
Splunk: Splunk’s Machine Learning Toolkit can provide observability
into your machine learning models in production.
ClearML: An open-source tool for automating training pipelines,
seamlessly moving from research to production.

IBM Watson OpenScale: A platform providing insights into AI health
with fast problem identification and resolution to help mitigate risks.
DataRobot MLOps: Monitors and manages models to detect issues
before they impact performance.
Datadog APM integration: This integration allows you to capture
LangChain requests, parameters, prompt completions, and visualize
LangChain operations. You can also capture metrics such as request
latency, errors, and token/cost usage.
Weights and Biases (W&B) tracing: We’ve already shown an
example of using W&B to monitor fine-training convergence, but it
can also fulfill the roles of tracking other metrics and logging and
comparing prompts.

Langfuse: With this open-source tool, we can conveniently monitor
detailed information along traces regarding the latency, cost, and
scores of our LangChain agents and tools.
LangKit: This extracts signals from prompts and responses to ensure
safety and security. It currently focuses on text quality, relevance
metrics, and sentiment analysis.

There are more tools out there at different stages of maturation. For
example, the AgentOps SDK is aiming to provide an interface to a toolkit
for evaluating and developing robust and reliable AI agents, but is still in
closed alpha.

Most of these integrations are very easy to integrate into LLM pipelines.
For example, for W&B, you can enable tracing by setting the
LANGCHAIN_WANDB_TRACING environment variable to True . Alternatively, you
can use a context manager with wandb_tracing_enabled() to trace a
specific block of code. With Langfuse, we can hand over
langfuse.callback.CallbackHandler() as an argument to the chain.run()
call.

Some of these tools are open-source, and what’s great about these platforms
is that they allow full customization and on-premises deployment for use
cases where privacy is important. For example, Langfuse is open-source
and provides an option of self-hosting. Choose the option that best suits
your needs and follow the instructions provided in the LangChain
documentation to enable tracing for your agents. Having been released only
recently, I am sure there’s much more to come for the platform, but it’s
already great to see traces of how agents execute, detecting loops and
latency issues. It enables sharing traces and stats with collaborators to
discuss improvements.

Let’s have a look at LangSmith now, which is another companion project of
LangChain, developed for observability!

LangSmith

LangSmith is a framework for debugging, testing, evaluating, and
monitoring LLM applications developed and maintained by LangChain AI,
the organization behind LangChain. LangSmith serves as an effective tool
for MLOps, specifically for LLMs, by providing features that cover
multiple aspects of the MLOps process. It can help developers take their
LLM applications from prototype to production by providing features for
debugging, monitoring, and optimizing.

LangSmith allows you to:

Log traces of runs from your LangChain agents, chains, and other
components
Create datasets to benchmark model performance
Configure AI-assisted evaluators to grade your models
View metrics, visualizations, and feedback to iterate and improve your
LLMs

On the LangSmith web interface, we can get a large set of graphs for a
bunch of statistics that can be useful to optimize latency, hardware
efficiency, and cost, as we can see here in the monitoring dashboard:

Figure 9.5: Evaluator metrics in LangSmith

The monitoring dashboard includes the following graphs that can be broken
down into different time intervals:

Statistics Category

Trace Count, LLM Call Count, Trace Success Rates, LLM
Call Success Rates

Volume

Trace Latency (s), LLM Latency (s), LLM Calls per Trace,
Tokens / sec

Latency

Total Tokens, Tokens per Trace, Tokens per LLM Call Tokens

% Traces w/ Streaming, % LLM Calls w/ Streaming, Trace
Time-to-First-Token (ms), LLM Time-to-First-Token (ms)

Streaming

Table 9.2: Statistics in LangSmith

Here’s a tracing example in LangSmith for the benchmark dataset run that
we saw in the How to evaluate LLM apps section:

Figure 9.6: Tracing in LangSmith

The platform itself is not open-source, however, LangChain AI, the
company behind LangSmith and LangChain, provides some support for
self-hosting for organizations with privacy concerns. There are, however, a
few alternatives to LangSmith such as Langfuse, Weights and Biases,
Datadog APM, Portkey, and PromptWatch, with some overlap in features.
We’ll focus on LangSmith here because it has a large set of features for
evaluation and monitoring, and because it integrates with LangChain.

In the next section, we’ll demonstrate the utilization of PromptWatch for
prompt tracking of LLMs in production environments.

PromptWatch

PromptWatch records information about response caching, chain execution,
prompting and generated output during interactions. The tracing and
monitoring can be very useful for debugging and ensuring an audit trail.
With PromptWatch.io, you can even track various aspects of LLM chains,
actions, retrieved documents, inputs, outputs, execution time, tool details,
and more for complete visibility in your system.

Make sure you sign up with PromptWatch.io online and get your API key –
you can find it under the account settings.

Let’s get the inputs out of the way:

from langchain import LLMChain, OpenAI, PromptTemplate
from promptwatch import PromptWatch

As discussed in Chapter 3, Getting Started with LangChain, I’ve set all API
keys in the environment in the set_environment() function. If you’ve
followed my recommendation, you can follow the imports up with this:

from config import set_environment
set_environment()

Otherwise, please make sure you set your environment variables in the way
you prefer. Next, we need to set up a prompt and a chain:

prompt_template = PromptTemplate.from_template("Finish this sen
my_chain = LLMChain(llm=OpenAI(), prompt=prompt_template)

Using the PromptTemplate class, the prompt template is configured with
one variable, input , indicating where the user input should be placed within

the prompt.

We can create a PromptWatch block, where LLMChain is invoked with an
input prompt:

with PromptWatch() as pw:
 my_chain("The quick brown fox jumped over")

This is a simple example of the model generating a response based on the
provided prompt. We can see this on PromptWatch.io.

Figure 9.7: Prompt tracking at PromptWatch.io

We can see the prompt together with the LLM’s response. We also get a
dashboard with a time series of activity, where we can drill down into
responses at certain times. This seems quite useful to effectively monitor
and analyze prompts, outputs, and costs in real-world scenarios.

The platform allows for in-depth analysis and troubleshooting in the web
interface that enables users to identify the root causes of issues and
optimize prompt templates. We could have explored more, for example
around prompt templates and versioning, but there’s only so much we can
cover here. promptwatch.io can also help with unit testing and
versioning prompt templates.

https://promptwatch.io/

Summary

Taking a trained LLM from research into real-world production involves
navigating many complex challenges around aspects such as scalability,
monitoring, and unintended behaviors. Responsibly deploying capable,
reliable models involves diligent planning around scalability,
interpretability, testing, and monitoring. Techniques such as fine-tuning,
safety interventions, and defensive design enable us to develop applications
that produce helpful, harmless, and readable outputs. With care and
preparation, generative AI holds immense potential benefit to industries
from medicine to education.

We’ve delved into deployment and the tools used for deployment.
Particularly, we deployed applications with FastAPI and Ray. In earlier
chapters, we used Streamlit. There are many more tools we could have
explored, for example, the recently emerged LangServe, which is developed
with LangChain applications in mind. While it’s still relatively fresh, it’s
definitely worth watching out for more developments in the future.

The evaluation of LLMs is important to assess their performance and
quality. LangChain supports comparative evaluation between models,
checking outputs against criteria, simple string matching, and semantic
similarity metrics. These provide different insights into model quality,
accuracy, and appropriate generation. Systematic evaluation is key to
ensuring LLMs produce useful, relevant, and sensible outputs.

Monitoring LLMs is a vital aspect of deploying and maintaining these
complex systems. With the increasing adoption of LLMs in various
applications, ensuring their performance, effectiveness, and reliability is of
utmost importance. We’ve discussed the significance of monitoring LLMs,

highlighted key metrics to track for a comprehensive monitoring strategy,
and have given examples of how to track metrics in practice.

We’ve looked at different tools for observability such as PromptWatch and
LangSmith. LangSmith provides powerful capabilities to track, benchmark,
and optimize LLMs built with LangChain. Its automated evaluators,
metrics, and visualizations help accelerate LLM development and
validation.

In the next and final chapter, let’s discuss what the future of Generative AI
will look like.

Questions

Please try and see if you can come up with the answers to these questions
from memory. If you are unsure about any of them, you might want to refer
to the corresponding section in the chapter:

1. In your opinion, what is the best term for describing the
operationalization of language models, LLM apps, or apps that rely on
generative models in general?

2. What is a token and why should you know about token usage when
querying LLMs?

3. How can we evaluate LLM apps?
4. Which tools can help to evaluate LLM apps?
5. What are the considerations for the production deployment of agents?
6. Name a few tools used for deployment.
7. What are the important metrics for monitoring LLMs in production?
8. How can we monitor LLM applications?
9. What’s LangSmith?

Join our community on

Discord

Join our community’s Discord space for discussions with the authors and
other readers:

https://packt.link/lang

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Chapter_09.xhtml
https://oceanofpdf.com/

10

The Future of Generative

Models

In this book, so far, we have discussed generative models for building
applications, and we have implemented a few simple ones – for example,
for semantic search, applications for content creation, customer service
agents, and assistants for developers and data scientists. We have explored
techniques such as tool use, agent strategies, semantic search with retrieval
augmented generation, and the conditioning of models with prompts and
fine-tuning.

In this chapter, we’ll deliberate on where this leaves us and where the future
leads us. We’ll consider weaknesses and socio-technical challenges of
generative models, and strategies for mitigation and improvement. We’ll
focus on value creation opportunities, where unique customization of
foundation models for specific use cases stands out. It remains uncertain
which entities – big tech firms, start-ups, or foundation model developers –
will capture the most upsides. We’ll also evaluate and address concerns
such as the extinction threat through AI.

Given the massive potential for increased productivity in various industries,
venture funding for generative AI start-ups skyrocketed in 2022 and 2023,
and major players like Salesforce and Accenture among many others have
made big commitments to generative AI with multibillion-dollar

investments. We’ll discuss potential effects on jobs in multiple industries,
and disruptive changes in creative industries, education, law,
manufacturing, medicine, and the military.

We will evaluate and address concerns such as misinformation,
cybersecurity, privacy, and fairness, and think about how the changes and
disruptions brought about by generative AI should influence regulations and
practical implementation.

The main sections of this chapter are:

The current state of generative AI
Economic consequences
Societal implications

Let’s start with the current state of models and their capabilities.

The current state of

generative AI

As discussed in this book, in recent years, generative AI models have
attained new milestones in producing human-like content across modalities
including text, images, audio, and video. Leading models like OpenAI’s
GPT-4 and DALL-E 2, and Anthropic’s Claude display impressive fluency
in content generation, be it textual or creative visual artistry.

Between 2022 and 2023, models have progressed in strides. If generative
models were previously capable of producing barely coherent text or grainy
images, now we see high-quality 3D images, videos, and the generation of
coherent and contextually relevant prose and dialogue, rivaling or even
surpassing the fluency levels of humans. These AI models leverage

gargantuan datasets and computational scale, enabling them to capture
intricate linguistic patterns, display a nuanced understanding of knowledge
about the world, translate texts, summarize content, answer natural
language questions, create appealing visual art, and acquire the capability to
describe images. Seemingly by magic, the AI-generated outputs mimic
human ingenuity – painting original art, writing poetry, producing human-
level prose, and even engaging in sophisticated aggregation and synthesis of
information from diverse sources.

But let’s be a bit more nuanced! Generative models come with weaknesses
as well as strengths. Deficiencies persist compared to human cognition,
including the frequent generation of plausible yet incorrect or nonsensical
statements. Hallucinations show a lack of grounding in reality, given that
they are based on patterns in data rather than an understanding of the real
world. Further, models exhibit difficulties performing mathematical,
logical, or causal reasoning. They are easily confused by complex
inferential questions, which could limit their applicability in certain fields
of work. The black box problem of lack of explainability for outputs as well
as for the models themselves hampers troubleshooting efforts, and
controlling model behaviors within desired parameters remains challenging.
AI can have serious bias issues because of the prejudiced data they are
trained on. This can lead to unfair results and make social inequalities
worse.

Here is a table summarizing the key strengths and deficiencies of current
generative AI compared to human cognition:

Category Human Cognition Generative AI Models

Language
Fluency

Contextually relevant,
draws meaning from world
knowledge

Highly eloquent, reflects
linguistic patterns

Knowledge Conceptual understanding
derived from learning and
experience

Statistical synthesis
lacking grounding

Creativity Originality reflecting
personality and talent

Imaginative but within
training distribution

Factual
Accuracy

Usually aligns with truth
and physical reality

Hallucinations reflecting
training data biases

Reasoning Intuitive yet can apply
heuristics after training

Logic is tightly limited
to training distribution

Bias Sometimes recognizes and
can override inherent biases

Propagates systemic
biases in data

Transparency Partial, subjective insights
from think-aloud techniques

Plausible reasoning from
chain-of-thought
prompts

Table 10.1: Strengths and deficiencies of LLMs

While LLMs such as GPT-4 showcase language fluency on parity with
humans, their lack of grounding, tendency for distortion, opaqueness, and
potential for harm underscore deficiencies that temper the promise of
generative AI. Progress in domains like logical reasoning and bias
mitigation remains at an early stage. As for transparency, while immense
complexity poses an immense challenge, determined efforts seek to surface

the lineage and mechanisms of reasoning for both humans (advances in the
understanding of neurocognition) and AI (interpretability and
explainability). Addressing problematic areas is key to developing reliable
and trustworthy systems. Throughout the book, we’ve discussed and
implemented potential solutions that address the weaknesses of generative
AI.

We should keep in mind, however, that this gap analysis of human versus
AI is for highlighting areas of improvement – as we have seen in domains
such as Atari games, chess, and Go, AIs can reach superhuman levels if
trained properly, and we haven’t touched the ceiling yet in many areas.
Let’s look more broadly at some of the socio-technical challenges involved
in unlocking the capabilities of generative AI systems and discuss
approaches to overcoming them!

Challenges

The profound potential of generative AI systems indicates an exciting future
if development continues at pace. This table shows a summary of a few of
the technical and organizational challenges together with approaches to
tackle them:

Challenge Potential Solutions

Knowledge Freshness (+
Concept Drift)

Continuous learning methods like elastic
weight consolidation, stream ingestion
pipelines, and efficient retraining
procedures

Specialized Knowledge Task-specific demonstrations and
prompting, knowledge retrieval and

grounding, and context expansion

Downstream Adaptability Strategic fine-tuning methods, catastrophic
forgetting mitigation, and optimized
hardware access

Biased Outputs Bias mitigation algorithms, balanced
training data, audits, inclusivity training,
and interdisciplinary research

Harmful Content
Generation

Moderation systems, interruption and
correction, and conditioning methods such
as RLHF

Logical Inconsistencies Hybrid architectures, knowledge bases,
and retrieval augmentation

Factual Inaccuracies Retrieval augmentation, knowledge bases,
and consistent knowledge base updating

Lack of Explainability Model introspection, concept attribution,
and interpretable model designs

Privacy Risks Differential privacy, federated learning,
encryption, and anonymization

High Latency and Compute
Costs

Model distillation, optimized hardware,
and efficient model design

Licensing Limitations Open/synthetic data, custom data, and fair
licensing agreements

Security/Vulnerabilities Adversarial robustness and cybersecurity
best practices

Governance Compliance frameworks and ethical
development governance

Table 10.2: Challenges of generative AI and potential solutions

Challenges of generative AI go beyond just improving content generation—
they encompass environmental sustainability, algorithmic equity, and
individual privacy. Strategies like employing simplified model
architectures, using knowledge distillation, and developing specialized
hardware are critical to reducing the carbon footprint of AI in the face of
rapid progress. To ensure fair AI, steps such as incorporating balanced
datasets, applying bias mitigation algorithms, enforcing fairness through
constrained optimization, and promoting inclusivity are essential, despite
their complexity.

To counteract potential harm from AI output, such as toxicity or false
information (hallucination), techniques like reinforcement learning guided
by human feedback and grounding responses in verified knowledge can be
employed. Additionally, securing sensitive data through privacy-preserving
methods like differential privacy, federated learning, and real-time content
correction is fundamental for upholding user dignity.

Finally, staying up to date with the evolving informational landscapes,
comprehending specialized domains, and flexibly adapting to emerging
needs represent newly visible obstacles as generative models permeate real-
world contexts.

Addressing these challenges involves a broad spectrum of responses that
must consider the entire life cycle of AI development. Such responses
include innovative training objectives focused on consistency, structural

knowledge integrations, and design of models for better controllability, as
well as software and hardware optimization for infrastructure efficiency.

One of the most effective developments is flexible user control. With
concerted effort in research and development, the aim is to steer generative
AI toward alignment with societal values. For reasons of computational
efficiency and costs, this implies a shift from pretraining to specialized
downstream conditioning (particularly, fine-tuning and prompt techniques).
This, in turn, will lead to a proliferation of start-ups applying core AI
technologies.

Technological innovation together with regulation and transparency of AI
development will ensure that generative AI enhances human capability
without compromising ethical standards. Looking ahead, generative AI
systems are poised to become more powerful and multifaceted.

Let’s have a look at some emerging trends in model development!

Trends in model development

The current doubling time in training compute of very large models is about
8 months, outstripping scaling laws such as Moore’s Law (transistor density
at cost increases at a rate of currently about 18 months) and Rock’s Law
(costs of hardware like GPUs and TPUs halve every 4 years). This graph
illustrates this trend in training compute of large models (source: Epoch,
Parameter, Compute, and Data Trends in Machine Learning. Retrieved
from https://epochai.org/mlinputs/visualization):

https://epochai.org/mlinputs/visualization

Figure 10.1: Training FLOPs of notable AI systems

The main point from this graph is the increase in compute, which is
apparent since the 1960s, and the Cambrian explosion of models of the deep
learning era at the top right. As discussed in Chapter 1, What Is Generative
AI?, parameter sizes for large systems have been increasing at a similar rate
as the training compute, which means we could see much larger and more
expensive systems if this growth continues.

Empirically derived scaling laws predict the performance of LLMs based
on the given training budget, dataset size, and the number of parameters.
This could mean that highly powerful systems will be concentrated in the
hands of Big Tech.

The KM scaling law, proposed by Kaplan and colleagues,
derived through empirical analysis and fitting of model
performance with varied data sizes, model sizes, and
training compute, presents power-law relationships,
indicating a strong codependence between model
performance and factors such as model size, dataset size,
and training compute.

The Chinchilla scaling law, developed by the Google
DeepMind team, involved experiments with a wider range
of model sizes and data sizes and suggests an optimal
allocation of compute budget to model size and data size,
which can be determined by optimizing a specific loss
function under a constraint.

However, future progress may depend more on data efficiency and model
quality than sheer size. Though massive models grab headlines, computing
power and energy constraints put a limit on unrestrained model growth. It’s
also unclear if performance will keep up further with the growth in
parameters. The future could see the co-existence of massive, general
models with smaller and more accessible specialized niche models that
provide faster and cheaper training, maintenance, and inference.

It has already been shown that smaller specialized models can prove highly
performant. As mentioned in Chapter 6, Developing Software with
Generative AI, we’ve recently seen models such as phi-1 (Textbooks Are All
You Need, 2023, Gunasekar and colleagues), with about 1 billion
parameters, that – despite its smaller scale – achieve high accuracy on
evaluation benchmarks. The authors suggest that improving data quality can
dramatically change the shape of scaling laws.

Further, there is a body of work on simplified model architectures, which
have substantially fewer parameters and only modestly drop accuracy (for
example, One Wide Feedforward is All You Need, Pessoa Pires and others,
2023). Additionally, techniques such as fine-tuning, distillation, and
prompting techniques can enable smaller models to leverage the capabilities
of large foundations without replicating their costs. To compensate for

model limitations, tools like search engines and calculators have been
incorporated into agents, and multi-step reasoning strategies, plugins, and
extensions may be increasingly used to expand capabilities.

The rapidly decreasing costs of AI model training represent a significant
shift in the landscape, enabling broader participation in cutting-edge AI
research and development. As noted, several factors are contributing to this
trend, including optimization of training regimes, improvements in data
quality, and the introduction of novel model architectures. Here is a brief
summary of techniques and approaches for making generative AI more
accessible and effective:

Simplified model architectures: Streamlining model design for easier
management, better interpretability, and lower computational cost.

Synthetic data generation: Creating artificial training data to
augment datasets while preserving privacy.
Model distillation: Transferring knowledge from a large model into a
smaller, more efficient one for easy deployment.
Optimized inference engines: Software frameworks that increase the
speed and efficiency of executing AI models on a given hardware.
Dedicated AI hardware accelerators: Specialized hardware like
GPUs and TPUs that dramatically accelerate AI computations.
Open-source and synthetic data: High-quality public datasets enable
collaboration and synthetic data enhances privacy and can help reduce
bias.
Quantization: Converting models to lower precision by reducing bit
sizes of weights and activations, decreasing model size and compute
costs.

Incorporating knowledge bases: Grounding model outputs in factual
databases reduces hallucinations and improves accuracy.
Retrieval augmented generation: Enhancing text generation by
retrieving relevant information from sources.
Federated learning: Training models on decentralized data to
improve privacy while benefiting from diverse sources.

Among the technical advancements helping drive down these costs,
quantization techniques have emerged as an essential contributor. Open-
source datasets and techniques such as synthetic data generation further
democratize access to AI training by providing high-quality and data-
efficient model development and removing some reliance on vast,
proprietary datasets. Open-source initiatives contribute to the trend by
providing cost-effective, collaborative platforms for innovation.

These innovations collectively lower barriers that have so far impeded real-
world generative AI adoption across various segments:

Financial barriers are reduced by compressing large model
performance into far smaller form factors through quantization and
distillation.
Privacy risks are mitigated via federated and synthetic techniques
circumventing exposure.
The accuracy limitations hampering small models are relieved through
grounding generation with external information.
Specialized hardware exponentially accelerates throughput while
optimized software maximizes the existing infrastructure.
Democratizing access by tackling constraints like cost, security, and
reliability unlocks benefits for vastly expanded audiences, steering

generative creativity from a narrow concentration toward empowering
diverse human talents.

The landscape is shifting from a focus on sheer model size and brute-force
compute to clever, nuanced approaches that maximize computational
efficiency and model efficacy. With quantization and related techniques
lowering barriers, we’re poised for a more diverse and dynamic era of AI
development where resource wealth is not the only determinant of
leadership in AI innovation.

This could mean a democratization of the market, as we’ll see now.

Big Tech vs. small enterprises

As for the spread of technology, two primary scenarios exist. In the
centralized scenario, generative AI and LLMs are primarily developed and
controlled by large tech firms that invest heavily in the necessary
computational hardware, data storage, and specialized AI/ML talent.
Entities like these benefit from economies of scale and resources that allow
them to bear the high costs of training and maintaining these sophisticated
systems. They produce general models that are often made accessible to
others through cloud services or APIs, but these one-size-fits-all solutions
may not perfectly align with the requirements of every user or organization.

Conversely, in the self-service scenario, companies or individuals take on
the task of training their own AI models. This approach allows for models
that are customized to the specific needs and proprietary data of the user,
providing more targeted and relevant functionality. However, this route
traditionally requires significant AI expertise, substantial computational
resources, and rigorous data privacy safeguards, which can be prohibitively
expensive and complex for smaller entities.

The central question is how these scenarios will coexist and evolve.
Presently, the centralized approach dominates due to the barriers in cost and
expertise required for the self-service model. Yet with the democratization
of AI – driven by declining computational costs, more widespread AI
training and tools, and innovations that simplify model training – the self-
service scenario may become increasingly viable for smaller organizations,
local governments, and community groups. These groups could potentially
harness tailored AI solutions for highly specific tasks, gaining advantages in
agility and privacy preservation.

As these two business models continue to develop, a hybrid landscape may
emerge where both approaches fulfill distinct roles based on use cases,
resources, expertise, and privacy considerations. Large firms might
continue to excel in providing industry-specific models, while smaller
entities could increasingly train or fine-tune their own models to meet niche
demands. The evolution of this landscape will largely depend on the pace of
advancements that make AI more accessible, more cost-effective, and
simpler to use without compromising robustness or privacy.

If robust tools emerge to simplify and automate AI development, custom
generative models may even be viable for local governments, community
groups, and individuals to address hyper-local challenges. While centralized
Big Tech firms benefit currently from economies of scale, distributed
innovation from smaller entities could unlock generative AI’s full potential
across all sectors of society.

While large tech firms currently dominate generative AI research and
development, smaller entities may ultimately stand to gain the most from
these technologies. As costs decline for computing, data storage, and AI

talent, custom pre-training of specialized models could become feasible for
small and mid-sized companies.

In a timeframe of 3–5 years, constraints around computing and talent
availability could ease considerably, eroding the centralized moat created by
massive investments. Specifically, if cloud computing costs decline as
projected, and AI skills become more widespread through education and
automated tools, self-training customized LLMs may become feasible for
many companies.

Rather than relying on generic models from Big Tech, tailored generative
AI fine-tuned on niche datasets could better serve unique needs. Start-ups
and non-profits often excel at rapidly iterating to build cutting-edge
solutions for specialized domains. Democratized access through cost
reductions could enable such focused players to train performant models
exceeding the capabilities of generalized systems.

In the next section, we’ll discuss the potential of Artificial General
Intelligence (AGI) and the threat of extinction by the malicious actions of a
superintelligent artificial entity.

Artificial General Intelligence

Not all abilities in LLMs scale predictably with model size. Capabilities
such as in-context learning may remain exclusive to particularly large
models due to factors beyond raw computational growth. There’s
speculation that sustained scaling – training vast models on even larger
datasets – might lead to broader skill sets and, some suggest, toward the
development of AGI with reasoning abilities on par or beyond humans.

Nevertheless, current neuroscientific perspectives and the limitations of
existing AI structures provide compelling arguments against an imminent
leap to AGI (inspired by the discussion in the article The feasibility of
artificial consciousness through the lens of neuroscience by Jaan Aru and
others; 2023):

Lack of embodied, embedded information: The current generation
of LLMs lacks multimodal and embodied experiences, being trained
predominantly on textual data. In contrast, human common sense and
understanding of the physical world are developed through rich,
diverse interactions involving multiple senses.
Different architecture from biological brains: The relatively simple
stacked transformer architecture used in models like GPT-4 lacks the
complex recurrent and hierarchical structures of the thalamocortical
system thought to enable consciousness and general reasoning in
humans.
Narrow capabilities: Existing models remain specialized for
particular domains like text and fall short in flexibility, causal
reasoning, planning, social skills, and general problem-solving
intelligence. This could change either with increasing tool use or with
fundamental changes to the models.
Minimal social abilities or intent: Current AI systems have no innate
motivations, social intelligence, or intent beyond their training
objectives. Fears of malicious goals or desire for domination seem
unfounded.
Limited real-world knowledge: Despite ingesting huge datasets, the
factual knowledge and common sense of large models remain very
restricted compared to humans. This impedes applicability in the
physical world.

Data-driven limitations: Reliance on pattern recognition from
training data rather than structured knowledge makes reliable
generalization to novel situations difficult.

As we address pressing AI challenges, the discourse around AI’s threat and
its potential for societal disruption should not overshadow immediate issues
like fairness and privacy.

Given current model limitations and the lack of agency, the notion of
today’s AI rapidly evolving into a dangerous superintelligence appears
highly unlikely. In formulating regulations, we must be vigilant against
regulatory capture, where dominant industry players invoke far-fetched
scenarios of AI-driven destruction to distract from pressing concerns and to
shape rules to fit their interests, potentially marginalizing the concerns of
smaller entities and the public. Nonetheless, ongoing attention to safety
research and ethical concerns is essential, especially as AI advances.

Let’s discuss the broader economy, and – the elephant in the room – jobs!

Economic consequences

Integrating generative AI promises immense productivity gains through
automating tasks across sectors – albeit risking workforce disruptions given
the pace of change. Assuming computing scales sustainably, projections
estimate 30–50% of current work activities will be automatible by 2030,
adding $6–8 trillion annually to global GDP. Sectors like customer service,
marketing, software engineering, and R&D may see over 75% of use case
value. However, past innovations ultimately spawned new occupations,
suggesting long-term realignment.

Developed regions are likely to witness faster uptake, displacing
administrative, creative, and analytical roles initially. Yet automation
extends beyond employment loss – at present, under 20% of US worker
tasks seem automatable directly through LLMs. But LLM-enhanced
software could transform 50% of tasks, affirming the force multiplication
from complementary innovations.

Thus automation’s labor impact remains complex – while augmenting
productivity, transitional pains persist. Still, the virtuous cycle between AI
progress and emerging specializations signals hopes for an uplift over
redundancy. And braiding priorities of sustainability, equity, and human
dignity throughout this transformation promises optimizing empowerment
over exploitation.

In a professional context, generative AI is poised to amplify human
creativity and transform traditional workflows across a range of industries.
For content creators, such as marketers and journalists, AI can rapidly
generate initial drafts, fostering a baseline that human creativity can build
upon for more customized outputs. Software developers benefit from AI’s
ability to produce code snippets, helping to expedite the development
process. For scholars and scientists, the ability of AI to distill complex
research into comprehensive summaries can catalyze scholarly progress and
innovation.

Here are some key predictions about how jobs may be impacted by
advances in language models and generative AI:

Routine legal work like draft preparation will be increasingly
automated, changing job roles for junior lawyers and paralegals.
Software engineering will see a rise in AI coding assistants handling
mundane tasks, enabling developers to focus on complex problem-

solving.
Data scientists will spend more time refining AI systems rather than
building predictive models from scratch.
Demand for specialized roles like prompt engineering will continue to
rise.
Teachers will utilize AI for course preparation and personalized
student support.
Journalists, paralegals, and graphic designers will employ generative
AI to enhance content creation, raising concerns about job impacts.
Demand will grow for experts in AI ethics, regulations, and security to
oversee responsible development.
Musicians and artists will collaborate with AI, boosting creative
expression and accessibility.
Striking an optimal balance between AI capabilities and human
judgment will be vital across sectors.
The common thread is that while routine tasks face increasing
automation, human expertise to steer AI directions and ensure
responsible outcomes will remain indispensable.

While certain jobs may be displaced by AI in the near term, especially
routine cognitive tasks, it may automate certain activities rather than
eliminate entire occupations. Technical experts like data scientists and
programmers will remain key to developing AI tools and realizing their full
business potential. By automating rote tasks, models may free up human
time for higher-value work, boosting economic output.

Concerns have emerged about saturation as generative AI tools are
relatively easy to build using foundation models. Customization of models
and tools will allow value creation, but it’s unclear who will capture the

most upsides and how powerful these applications can be. While current
market hype is high, investors are tempering decisions given lower
valuations and skepticism following the 2021 AI boom/bust cycle. The
long-term market impact and the winning generative AI business models
have yet to unfold.

The 2021 AI boom/bust cycle refers to a rapid acceleration
in investment and growth in the AI start-up space followed
by a market cooldown and stabilization in 2022 as
projections failed to materialize and valuations declined.

Here’s a quick summary:

Boom phase (2020-2021): There was huge interest and
skyrocketing investment in AI start-ups offering
innovative capabilities like computer vision, natural
language processing, robotics, and machine learning
platforms. Total funding for AI start-ups hit record
levels in 2021, with over $73 billion invested globally
according to Pitchbook. Hundreds of AI start-ups were
founded and funded during this period.
Bust phase (2022): In 2022, the market underwent a
correction, with valuations of AI start-ups falling
significantly from their 2021 highs. Several high-
profile AI start-ups like Anthropic and Cohere faced
valuation markdowns. Many investors became more
cautious and selective with funding AI start-ups.
Market corrections in the broader tech sector also
contributed to the bust.

Key factors: Excessive hype, unrealistic growth
projections, historically high valuations in 2021, and
broader economic conditions all contributed to the
boom-bust cycle. The cycle followed a classic pattern
seen previously in sectors like dot-com and blockchain.

As AI models become more sophisticated and economical to operate, we
can anticipate a substantial proliferation of generative AI and LLM
applications into novel domains. Beyond just the plummeting hardware
expenses that have historically followed Moore’s Law, there are additional
economies of scale affecting AI systems.

In Chapter 1, What Is Generative AI?, we discussed the pertinent trend in
the AI industry that encompasses gains in efficiency stemming from the
iterative refinement of code, the development of sophisticated tools, and the
enhancement of techniques. The improved efficiency because of new
techniques and approaches, combined with the declining hardware costs,
fosters a virtuous cycle: as costs diminish, AI adoption widens, in turn
spurring further cost reductions and efficiency improvements. What
emerges is a feedback loop where each iteration of efficiency catalyzes
increased usage, which in itself leads to even greater efficiency – a dynamic
poised to dramatically advance the frontier of AI capabilities.

Let’s look at various sectors where generative models will have profound
near-term impacts, starting with creative endeavors.

Creative industries and

advertising

The gaming and entertainment industries are leveraging generative AI to
craft uniquely immersive user experiences. Major efficiency gains from
automating creative tasks could increase leisure time spent online.
Generative AI can enable machines to generate new and original content,
such as art, music, and literature, by learning from patterns and examples.
This has implications for creative industries, as it can enhance the creative
process and potentially create new revenue streams. It also unlocks new
scales of personalized, dynamic content creation for media, film, and
advertising.

For media, film, and advertising, AI unlocks new scales of personalized,
dynamic content creation. In journalism, automated article generation using
massive datasets can free up reporters to focus on more complex
investigative stories. AI-Generated Content (AIGC) is playing a growing
role in transforming media production and delivery by enhancing efficiency
and diversity. In journalism, text generation tools automate writing tasks
traditionally done by human reporters, significantly boosting productivity
while maintaining timeliness. Media outlets like the Associated Press
generate thousands of stories per year using AIGC. Robot reporters like the
Los Angeles Times Quakebot can swiftly produce articles on breaking
news.

Other applications include Bloomberg News’ Bulletin service where
chatbots create personalized one-sentence news summaries. AIGC also
enables AI news anchors that co-present broadcasts with real anchors by
mimicking human appearance and speech from text input. Chinese news
agency Xinhua’s virtual presenter Xin Xiaowei is an example, presenting
broadcasts from different angles for an immersive effect.

AIGC is transforming movie creation from screenwriting to post-
production. AI screenwriting tools analyze data to generate optimized
scripts. Visual effects teams blend AI-enhanced digital environments and
de-aging with live footage for immersive visuals. Deep fake technology
recreates or revives characters convincingly.

AI also powers automated subtitle generation, even predicting dialogue in
silent films by training models on extensive audio samples. This expands
accessibility via subtitles and recreates voiceovers synchronized to scenes.
In post-production, AI color grading and editing tools like Colourlab AI and
Descript simplify processes like color correction using algorithms.

In advertising, AIGC unlocks new potential for efficient, customized
advertising creativity and personalization. AI-generated content allows
advertisers to create personalized, engaging ads tailored to individual
consumers at scale. Platforms like Creative Advertising System (CAS)
and Smart Generation System Personalized Advertising Copy (SGS-
PAC) leverage data to automatically generate ads with messaging targeted
to specific user needs and interests.

AI also assists in advertising creativity and design – tools like Vinci
produce customized attractive posters from product images and slogans,
while companies like Brandmark.io generate logo variations based on user
preferences. GAN technologies automate product listing generation with
keywords for effective peer-to-peer marketing. Synthetic ad production is
also on the rise, enabling highly personalized, scalable campaigns that save
time.

In music, tools like Google’s Magenta, IBM’s Watson Beat, and Sony CSL’s
Flow Machine can generate original melodies and compositions. AIVA
similarly creates unique compositions from parameters tuned by users.

LANDR’s AI mastering uses machine learning to process and improve
digital audio quality for musicians.

In visual arts, MidJourney uses neural networks to generate inspirational
images that can kickstart painting projects. Artists have used its outputs to
create prize-winning works. DeepDream’s algorithm imposes patterns on
images, creating psychedelic art. GANs can generate abstract paintings
converging on a desired style. AI painting conservation analyzes artwork to
digitally repair damage and restore pieces.

Animation tools like Adobe’s Character Animator and Anthropic’s Claude
can help with the generation of customized characters, scenes, and motion
sequences, opening animation potential for non-professionals. ControlNet
adds constraints to steer diffusion models, increasing output variability.

For all these applications, advanced AI expands creative possibilities
through both generative content and data-driven insights. In all cases,
quality control and properly attributing the contributions of human artists,
developers, and training data remains an ongoing challenge as adoption
spreads.

Education

One potential near-future scenario is that the rise of personalized AI tutors
and mentors could democratize access to education for high-demand skills
aligned with an AI-driven economy. In the education sector, generative AI is
already transforming how we teach and learn. Tools like ChatGPT can be
used to automatically generate personalized lessons and customized content
for individual students. This reduces instructor workloads substantially by
automating repetitive teaching tasks. AI tutors provide real-time feedback
on student writing assignments, freeing up teachers to focus on more

complex skills. Virtual simulations powered by generative AI can also
create engaging, tailored learning experiences adapted to different learners’
needs and interests.

However, risks around perpetuating biases and spreading misinformation
need to be studied further as these technologies evolve. The accelerating
pace of knowledge and the obsolescence of scientific findings mean that
training children’s curiosity-driven learning should focus on developing the
cognitive mechanisms involved in initiating and sustaining curiosity, such
as awareness of knowledge gaps and the use of appropriate strategies to
resolve them.

While AI tutors tailored to each student could enhance outcomes and
engagement, poorer schools may be left behind, worsening inequality.
Governments should promote equal access to prevent generative AI from
becoming a privilege of the affluent. Democratizing opportunity for all
students remains vital.

If implemented thoughtfully, personalized AI-powered education could
make crucial skills acquisition accessible to anyone motivated to learn.
Interactive AI assistants that adapt courses to students’ strengths, needs, and
interests could make learning efficient, engaging, and equitable. However,
challenges around access, biases, and socialization need addressing.

Law

Generative models like LLMs can automate routine legal tasks such as
contract review, documentation generation, and brief preparation. They also
enable faster, comprehensive legal research and analysis. Additional
applications include explaining complex legal concepts in plain language
and predicting litigation outcomes using case data. However, responsible

and ethical use remains critical given considerations around transparency,
fairness, and accountability. Overall, properly implemented AI tools
promise to boost legal productivity and access to justice while requiring
ongoing scrutiny regarding reliability and ethics.

Manufacturing

In the automotive sector, generative models are employed to generate 3D
environments for simulations and aid in the development of cars.
Additionally, generative AI is utilized for road-testing autonomous vehicles
using synthetic data. These models can also process object information to
comprehend the surrounding environment, understand human intent
through dialogues, generate natural language responses to human input, and
create manipulation plans to assist humans in various tasks.

Medicine

A model that can accurately predict physical properties from gene
sequences would represent a major breakthrough in medicine and could
have profound impacts on society. It could further accelerate drug discovery
and precision medicine, enable earlier disease prediction and prevention,
provide a deeper understanding of complex diseases, and improve gene
therapies. However, it also raises major ethical concerns around genetic
engineering and could exacerbate social inequalities.

New techniques with neural networks are already employed to lower long-
read DNA sequencing error rates (Baid and colleagues; DeepConsensus
improves the accuracy of sequences with a gap-aware sequence
transformer, September 2022), and, according to a report by ARK
Investment Management (2023), in the short term, technology like this can

make it already possible to deliver the first high-quality, whole long-read
genome for less than $1,000. This means that large-scale gene-to-
expression models might not be far away either.

Military

Militaries worldwide are investing in research to develop Lethal
Autonomous Weapons Systems (LAWS). Robots and drones can identify
targets and deploy lethal force without any human supervision. Machines
can process information and react faster than humans, removing emotion
from lethal decisions. However, this raises significant moral questions.
Allowing machines to determine whether lives should be taken crosses a
troubling threshold. Even with sophisticated AI, complex factors in war like
proportionality and distinction between civilians and combatants require
human judgment.

If deployed, completely autonomous lethal weapons would represent an
alarming step toward relinquishing control over life-and-death decisions.
They could violate international humanitarian law or be used by despotic
regimes to terrorize populations. Once unleashed fully independently, the
actions of autonomous killer robots would be impossible to predict or
restrain.

The advent of highly capable generative AI will likely transform many
aspects of society in the coming years beyond the economics and the
disruption of certain jobs. Let’s think a bit more broadly about the societal
impact!

Societal implications

As generative models continue to develop and add value to businesses and
creative projects, generative AI will shape the future of technology and
human interaction across domains. While their widespread adoption brings
forth numerous benefits and opportunities for businesses and individuals, it
is crucial to address the ethical and societal concerns that arise from
increasing reliance on AI models in various fields.

Generative AI offers immense potential benefits across personal, societal,
and industrial realms if deployed thoughtfully. At a personal level, these
models can enhance creativity and productivity, and increase accessibility to
services like healthcare, education, and finance. By democratizing access to
knowledge resources, they can help students learn or aid professionals in
making decisions by synthesizing expertise. As virtual assistants, they
provide instant, customized information to facilitate routine tasks.

From a consumer standpoint, generative AI has the potential to deliver
unprecedented personalization. Recommendation systems can fine-tune
their outputs to individual preferences. Marketing efforts can be adapted to
specific customer segments and local tastes while maintaining consistency
and scale.

The rise of generative AI represents a significant milestone within a broader
societal trend of how creative content is being generated and consumed.
The internet has already nurtured a culture of remixing, where derivative
works and co-creation are the norms. Generative AI fits naturally within
this paradigm by creating new content through the recombination of
existing digital materials, promoting the ethos of shared, iterative creation.

However, the capacity of generative AI to synthesize and remix copyrighted
materials at scale presents intricate legal and ethical challenges. The
training of these models on extensive corpora that encompass literature,

articles, images, and other copyrighted works creates a tangled web for
attribution and compensation. Existing tools struggle to identify content
generated by AI, which complicates efforts to apply traditional copyright
and authorship principles. This dilemma underscores the urgent need for
legal frameworks that can keep pace with technological advances and
navigate the complex interplay between rights-holders and AI-generated
content.

One of the major problems that I can see is misinformation, either in the
interest of political interest groups, foreign actors, or large corporations.
Let’s discuss this threat!

Misinformation and

cybersecurity

AI presents a dual-edged sword against disinformation. While it enables
scalable detection, automation makes it easier to spread sophisticated,
personalized propaganda. AI could help or harm security depending on
whether it is used responsibly. It increases vulnerabilities to misinformation
along with cyberattacks using generative hacking and social engineering.

There are significant threats associated with AI techniques like micro-
targeting and deepfakes. Powerful AI can profile users psychologically to
deliver personalized disinformation that facilitates concealed manipulation,
escaping broad examination. Big Data and AI could be leveraged to exploit
psychological vulnerabilities and infiltrate online forums to attack and
spread conspiracy theories.

Disinformation has transformed into a multifaceted phenomenon, involving
biased information, manipulation, propaganda, and intent to influence

political behavior. For example, during the COVID-19 pandemic, the
spread of misinformation and infodemics has been a major challenge. AI
can influence public opinion and sway elections.

It can also generate fake audio/video content to damage reputations and sow
confusion. State and non-state actors are weaponizing these capabilities for
propaganda to damage reputations and sow confusion. AI can be used by
political parties, governments, criminal groups, and even the legal system to
launch lawsuits and/or extract money.

This likely will have far-reaching consequences in various domains. A
significant portion of internet users may be obtaining the information they
need without accessing external websites. There is a danger of large
corporations being the gatekeepers of information and controlling public
opinion, effectively being able to restrict certain actions or viewpoints.

Careful governance and digital literacy are essential to build resilience.
Though no single fix exists, collective efforts promoting responsible AI
development can help democratic societies address emerging threats.

Let’s talk more about regulations!

Regulations and

implementation challenges

Realizing the potential of generative AI in a responsible manner involves
addressing a number of practical legal, ethical, and regulatory issues:

Legal: Copyright laws remain ambiguous regarding AI-generated
content. Who owns the output – the model creator, training data

contributors, or end users? Replicating copyrighted data in training
also raises fair use debates that need clarification.
Data protection: Collecting, processing, and storing the massive
datasets required to train advanced models creates data privacy and
security risks. Governance models ensuring consent, anonymity, and
safe access are vital.
Oversight and regulations: Calls are mounting for oversight to ensure
non-discrimination, accuracy, and accountability from advanced AI
systems. However, flexible policies balancing innovation and risk are
needed rather than burdensome bureaucracy.
Ethics: Frameworks guiding development toward beneficial outcomes
are indispensable. Integrating ethics through design practices focused
on transparency, explicability, and human oversight helps build trust.

Overall, proactive collaboration between policymakers, researchers, and
civil society is essential to settle unresolved issues around rights, ethics, and
governance. With pragmatic guardrails in place, generative models can
fulfill their promise while mitigating harm.

There is a growing demand for algorithmic transparency. This means that
tech companies and developers should reveal the source code and inner
workings of their systems. However, there is resistance from these
companies and developers, who argue that disclosing proprietary
information would harm their competitive advantage. Open-source models
will continue to thrive, and local legislation in the EU and other countries
will push for transparent use of AI.

The consequence of AI bias includes potential harm to individuals or groups
due to biased decisions made by AI systems. Incorporating ethics training
into computer science curricula can help reduce biases in AI code. By

teaching developers how to build applications that are ethical by design, the
probability of biases being embedded into the code can be minimized. To
stay on the right path, organizations need to prioritize transparency,
accountability, and guardrails to prevent bias in their AI systems. AI bias
prevention is a long-term priority for many organizations; however, without
legislation driving it, it can take time to be introduced. Local legislation in
EU countries, for example, such as the European Commission’s proposal
for harmonized rules on AI regulation, will drive more ethical use of
language and imagery.

A current German law on fake news, which imposes a 24-hour timeframe
for platforms to remove fake news and hate speech, is impractical for both
large and small platforms. Additionally, the limited resources of smaller
platforms make it unrealistic for them to police all content. Further, online
platforms should not have the sole authority to determine what is
considered truth, as this could lead to excessive censorship. More nuanced
policies are needed that balance free speech, accountability, and feasibility
for a diversity of technology platforms to comply. Relying solely on private
companies to regulate online content raises concerns about a lack of
oversight and due process. Broader collaboration between government, civil
society, academics, and industry can develop more effective frameworks to
counter misinformation while protecting rights.

To maximize benefits, companies need to ensure human oversight,
diversity, and transparency in development. Policymakers may need to
implement guardrails preventing misuse while providing workers with
support to transition as activities shift. With responsible implementation,
generative AI could propel growth, creativity, and accessibility in a more
prosperous society. Addressing potential risks early on and ensuring a just

distribution of benefits designed to serve public welfare will cultivate a
sense of trust among stakeholders, such as:

The dynamics of progress: Fine-tuning the pace of transformation is
critical to avoid any undesired repercussions. Moreover, excessively
slow developments could stifle innovation, suggesting that
determining an ideal pace through encompassing public discourse is
crucial.
The human-AI symbiosis: Rather than striving for outright
automation, more advantageous systems would integrate and
complement the creative prowess of humans with the productive
efficiency of AI. Such a hybrid model will ensure optimal oversight.

Promoting access and inclusion: Equitable access to resources,
relevant education, and myriad opportunities concerning AI is key to
negating the amplification of disparities. Representativeness and
diversity should be prioritized.
Preventive measures and risk management: Constant evaluation of
freshly emerging capabilities via interdisciplinary insights is necessary
to evade future dangers. Excessive apprehensions, however, should not
impede potential progress.
Upholding democratic norms: Collaborative discussions, communal
efforts, and reaching a compromise will inevitably prove more
constructive in defining the future course of AI, as compared to
unilateral decrees imposed by a solitary entity. Public interest must
take precedence.

Let’s conclude this chapter!

The road ahead

The forthcoming era of generative AI models offers a plethora of intriguing
opportunities and unparalleled progression, yet it is interspersed with
numerous uncertainties. As discussed in this book, many breakthroughs
have been accomplished in recent months, but successive challenges
continue to linger, mainly pertaining to precision, reasoning ability,
controllability, and entrenched bias within these models. While grandiose
claims of superintelligent AI on the horizon may seem hyperbolic,
consistent trends predict sophisticated capabilities sprouting within a few
decades.

On a technical level, generative models like ChatGPT often function as
black boxes, with limited transparency into their decision-making
processes. A lack of model interpretability makes it difficult to fully
understand model behavior or to control outputs. There are also concerns
about potential biases that could emerge from imperfect training data. On a
practical level, generative models require extensive computational
resources for training and deployment; however, we discussed
developments and trends that change that.

On the positive side, AI can democratize skills, allowing amateurs to
produce professional quality output in design, writing, and other areas.
Businesses can benefit from faster, cheaper, on-demand work. However,
there are major concerns about job losses, especially for specialized middle-
class roles like graphic designers, lawyers, and doctors. Their work is being
automated while low-skilled workers learn to leverage AI as a superpower.

However, the proliferation of generative content raises valid concerns about
misinformation, plagiarism in academia, and impersonation in online
spaces. As these models become more adept at mimicking human
expression, people may have difficulty discerning what is human-generated

versus AI-generated, enabling new forms of deception. Deepfakes produced
in real-time will proliferate scams and erode trust. Most ominously, AI
could be weaponized by militaries, terrorists, criminals, and governments
for propaganda and influence. There are also fears about generative models
exacerbating social media addiction due to their ability to produce endless
customized content.

The sheer pace of advancement creates unease surrounding human
obsolescence and job displacement, which could further divide economic
classes. Unlike physical automation of the past, generative AI threatens
cognitive job categories previously considered safe from automation.
Managing this workforce transition ethically and equitably will require
foresight and planning. There are also philosophical debates around whether
AI should be creating art, literature, or music that has historically reflected
the human condition.

For corporations, effective governance frameworks have yet to be
established around acceptable use cases. Generative models amplify risks of
misuse, ranging from creating misinformation such as deepfakes to
generating unsafe medical advice. Legal questions around content licensing
and intellectual property arise. While generative models can enhance
business productivity, quality control and bias mitigation incur costs.

Looking decades ahead, perhaps the deepest challenges are ethical. As AI is
entrusted with more consequential decisions, alignment with human values
becomes critical. While accuracy, reasoning ability, controllability, and
mitigating bias remain technical priorities, other priorities should include
fortifying model robustness, promoting transparency, and ensuring
alignment with human values.

While future capabilities remain uncertain, proactive governance and
democratization of access are essential to direct these technologies toward
equitable, benevolent outcomes. Collaboration between researchers,
policymakers, and civil society around issues of transparency,
accountability, and ethics can help align emerging innovations with shared
human values. The goal should be to empower human potential, not mere
technological advancement.

Join our community on

Discord

Join our community’s Discord space for discussions with the authors and
other readers:

https://packt.link/lang

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Chapter_10.xhtml
https://oceanofpdf.com/

packt.com

Subscribe to our online digital library for full access to over 7,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit
our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on Packt books and eBooks.

Other Books You May

Enjoy

https://packt.com/
https://www.packt.com/

If you enjoyed this book, you may be interested in these other books by
Packt:

Transformers for Natural Language Processing and Computer Vision

Denis Rothman

ISBN: 9781805128724

Master the art of fine-tuning models and engineering effective prompts
Tackle examples of LLM risks by delving into strategies to mitigate
them
Learn about the potential functional AGI capabilities of foundation
models
Visualize transformer model activity for deeper insights using BertViz,
LIME, and SHAP
Create and implement cross-platform chained models, such as
HuggingGPT
Skyrocket your productivity with an automated generative ideation
process

https://www.packtpub.com/product/transformers-for-natural-language-processing-and-computer-vision-third-edition/9781805128724

Go in-depth into vision transformers with CLIP, DALL-E 2, DALL-E
3, and GPT-4V

Building LLM Apps

Valentina Alto

ISBN: 9781835462317

Core components of LLMs’ architecture, including encoder-decoders
blocks, embedding and so on
Get well-versed with unique features of LLMs like GPT-3.5/4, Llama
2, and Falcon LLM
Use AI orchestrators like LangChain, and Streamlit as frontend
Get familiar with LLMs components such as memory, prompts and
tools
Learn non-parametric knowledge, embeddings and vector databases
Understand the implications of LFMs for AI research, and industry
applications
Customize your LLMs with fine tuning
Learn the ethical implications of LLM-powered applications

https://www.packtpub.com/product/building-llm-apps/9781835462317

Generative AI Engineering

Konrad Banachewicz

ISBN: 9781805120513

Get to grips with the fundamentals of generative AI and its
applications
Familiarize yourself with different types of generative models and
when to use them
Train and Finetune generative models using PyTorch
Evaluate the performance of your models and fine-tune them for
optimal results
Find best practices for deploying and scaling generative AI models in
production environments

https://www.packtpub.com/product/generative-ai-engineering-1e/9781805120513

Packt is searching for

authors like you

If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to help them
share their insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

https://authors.packtpub.com/

Share your thoughts

Now you’ve finished Generative AI with LangChain, we’d love to hear
your thoughts! If you purchased the book from Amazon, please click
here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you
purchased it from.

Your review is important to us and the tech community and will help us
make sure we’re delivering excellent quality content.

OceanofPDF.com

https://packt.link/r/1835083463
https://oceanofpdf.com/

Index

Symbols
2021 AI boom/bust cycle 312

A
AgentOps 261

agents 52, 53

benefits 52

AI, for software development

code LLMs 175-179

AI-Generated Content (AIGC) 313

alignment 226

Annoy (Approximate Nearest Neighbors Oh Yeah) algorithm
141

Anthropic 85

API model integrations

Anthropic 85

Azure 84

exploring 69-72

fake LLM 72, 73

Google Cloud Platform 77-79

clbr://internal.invalid/book/OEBPS/Index.xhtml

Hugging Face 75, 76

Jina AI 80-82

OpenAI 73, 75

Replicate 82-84

application, for customer service

building 89-95

Application Programming Interface (APIs) 69

Approximate Nearest Neighbor (ANN) 59, 141

Argilla 289, 290

Artificial General Intelligence (AGI) 308-310

Artificial Intelligence (AI) 1, 5, 144

using, for software development 174, 175

arXiv 117

automated data science 207, 209

AutoML 211-213

data collection 209

LLMs and generative AI benefits 206

preprocessing and feature extraction 210

visualization and EDA 210

Automated Machine Learning (AutoML) 211-213

Automatic Speech Recognition (ASR) 33

Azure 84

B

clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml

base model 15

Big Bang of DL 10

black-box scenario 212

Boom Phase 312

Bust Phase 312

Byte-Pair Encoding (BPE) 25

C
Chain of Density (CoD) 105, 106

Chain-of-Thought (CoT) 128

Chain-of-Thought (CoT) prompting 169, 244, 248, 249

chains 50, 51

chatbot 132

ELIZA 132

PARRY 132

responses, moderating 167-169

use cases 133

chatbot implementation 153

document loader 154, 155

memory 160

vector storage 155-160

ChatGPT 132

Chinchilla scaling law 305

Chroma 147, 148

clbr://internal.invalid/book/OEBPS/Index.xhtml

Claude and Claude 2 18

ClearML 290

code LLMs 175-179

code, with LLMs

Llama 2 186

small local model 187-189

StarChat 184-186

StarCoder 179-184

writing 179

Comet.ml 289

commercial models 241, 242

Common European Framework of Reference for Languages
(CEFR) 17

Conda

cons 66

pros 66

reference link 68

using 68

conditioning 226

conditioning LLMs 226, 227

methods 227, 228

conditioning LLMs, methods

inference-time conditioning 230-232

low-rank adaptation 229, 230

reinforcement learning, with human feedback 228

contextual compression 156

continuous integration and continuous delivery (CI/CD) 276

ConversationSummaryMemory

using 164

convolutional neural network (CNN) 31, 136

Creative Advertising System (CAS) 314

D
Datadog APM integration 290

data exploration

with LLMs 217-222

DataRobot MLOps 290

data science

generative models, impact 204-206

generative models impact, principal areas 204

questions, answering by agents 213-216

use cases, for generative AI 204

DeepEval 290

Deep Learning (DL) 5

Denoising Diffusion Implicit Model (DDIM) 29

dependencies

setting up 65-67

DocArray 156

clbr://internal.invalid/book/OEBPS/Index.xhtml

Docker

cons 66

pros 66

reference link 68

using 68

document loaders, LangChain 149, 150

documents

information, extracting from 112-115

DuckDuckGo 117

E
economic consequences 310-312

creative industries and advertising 313, 314

education 315

law 315

manufacturing 316

medicine 316

military 316

Efficient Transfer Learning (PELT) 232

Embedding class 73

embeddings 70, 135-138

bag-of-words approach 136

word2vec 136

Exploratory Data Analysis (EDA) 209

extract, transform, and load (ETL) 209

F
Facebook AI Similarity Search (Faiss) 59, 142

fact-checking

hallucination, mitigating through 100-103

fact-checking stages

claim detection 100

evidence retrieval 100

verdict prediction 100

fake LLM 72, 73

FastAPI 276-279

few-shot chain-of-thought prompting 249

few-shot learning prompting 246-248

Financial PhraseBank 91

Finetuner 80

fine-tuning 225, 232, 233

advantages 232

commercial models 241, 242

open-source models 236-241

setting up 233-236

FizzBuzz 79

Flowise library 49

forward diffusion process 28

clbr://internal.invalid/book/OEBPS/Index.xhtml

Foundational Model Orchestration (FOMO) 261

foundation model 15

G
gcloud command-line interface (CLI)

installation link 77

Generative Adversarial Networks (GANs) 28

generative AI models 2-8

Artificial General Intelligence 309, 310

Big Tech, versus small enterprises 307, 308

challenges 302, 303

current state 300, 301

developing, terms 19

forthcoming era 321, 322

handling, on various domains 6

impact, on data science 204-206

need for 8-11

techniques and approaches, for making accessible 306

trends, in model development 304-307

usage, in other domains 33, 34

Generative Pre-trained Transformer (GPT) models 3, 13-16

conditioning 26

pre-training 23, 24

scaling 25, 26

clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml

tokenization 24, 25

usage, considerations 20-23

Google Cloud Natural Language (NL) 77

Google Cloud Platform (GCP) 77-80

Google Colab 233

GPT4All 88, 89

grade-school math questions (GSM8k) 235

Graph Convolutional Networks (GCNs) 141

Graphics Processing Units (GPUs) 8, 233

Graph Neural Networks (GNNs) 141

Grouped-Query Attention (GQA) 22

H
hallucination

mitigating, through fact-checking 100-103

hierarchical navigable small world (HNSW) 141, 144

hnswlib 142

Hugging Face 75, 76

Hugging Face Transformers 86, 87

HumanEval dataset 176

HyperText Markup Language (HTML) 59

I
IBM Watson OpenScale 290

clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml

inference-time conditioning 230-232

techniques 231

information, summarizing 103

basic prompting 103, 104

Chain of Density (CoD) 105, 106

map reduce approach 107-109

prompt templates, using 104

token usage, monitoring 109-111

infrastructure as a Service (IaaS) 84

Infrastructure as Code (IaC) 276

Integrated Development Environments (IDEs) 174

J
Jina AI 80-82

reference link 80

K
k-dimensional trees (k-d trees) 140

KM scaling law 305

L
Ladder Side-Tuning (LST) 232

LangChain 46-50, 147

agents 52, 53

benefits 47

chains 50, 51

comparing, with frameworks 60, 61

data loaders 148, 149

document loaders 149, 150

key components, exploring 50

memory 54, 55

retrievers 148-151

tools 55, 56

working 57-59

LangChain API

reference link 59

LangChain Expression Language (LCEL) 105

LangChainHub library 49

LangFlow library 49

Langfuse 290

LangKit 290

LangServe 274

LangSmith 291-293

Language Models (LMs) 5

Large Language Models (LLMs) 1, 5, 11, 12, 37, 43-45

areas 12

deploying 273

deployment readiness, ensuring 258, 259

clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml

evaluating 261-264

examples 45

external services, integrating 44, 45

Foundational Model Orchestration (FOMO) 261

limitations 38-42

limitations, mitigating 42, 43

LLMOps 260

MLOps 260

ModelOps 261

need for 45

observing 284-286

parameters 9

tasks, related to programming 174

usage 27

used, for data exploration 217-222

large language models (LLMs), technical background

GPT 13-16

GPT models 20

major players 18-20

notable foundational GPT models 16-18

latent diffusion model 31

Lethal Autonomous Weapons Systems (LAWS) 316

Llama 2 186

LLaMa and LLaMa 2 series 17

clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml

llama.cpp 87, 88

LlamaHub library 48

LLM apps, deployment 273-275

aspects, for production 273

FastAPI web server, using 276-279

Ray, using 280

requirements for running 275

services and frameworks 274

LLM apps, evaluation

comparing, against criteria 265-267

running, against datasets 268-272

string and semantic comparisons 267

two outputs, comparing 264, 265

LLM apps, monitoring

considerations 285

evaluation areas 286

LangSmith 291-293

observability tools 289-291

PromptWatch 294, 295

responses, tracing 287-289

LLMonitor 290

LLMOps 260

LMOps 260

locality sensitive hashing (LSH) 141

local models

exploring 85

low-rank adaptation 229, 230

Low-Rank Adaptation (LoRA) 228, 229

M
Machine Learning (ML) 5

map reduce approach 107-109

maps tokens 24

Masked Language Modeling (MLM) 23

Massive Multitask Language Understanding (MMLU) 2

Maximum Marginal Relevance (MMR) 156

md5 checksum tool 87

Mean Squared Error (MSE) 31

memory 54, 55

options 54

memory, chatbot implementation 160

conversation buffers 161-163

ConversationSummaryMemory 164

knowledge graphs, storing 164

long-term persistence 166

memory mechanisms, combining 165, 166

Mixture of Experts (MoE) model 15

MLOps 260

ModelOps 261

monitoring process 284

Multi-Head Attention (MHA) 21

Multi-Query Attention (MQA) 22

N
Natural Language Processing (NLP) 2

Negative Log-Likelihood (NLL) 23

Neural Machine Translation (NMT) 20

nmslib 142

O
observation-dependent reasoning 123, 124

OpenAI 4, 73-75

open-source models 236-241

Optical Character Recognition (OCR) 7

P
PaLM 2 16

Parameter-Efficient Fine-Tuning (PEFT) 229

Perplexity (PPL) 23

Pip

cons 66

pros 66

reference link 67

using 68

plan-and-execute agent 123, 124

platform as a service (PaaS) 84

Poetry

cons 66

pros 66

reference link 68

using 68

Portkey 289

product quantization (PQ) 140

prompt chaining 50

prompt engineering 225, 242-244

components 242

techniques 244-246

prompt engineering, techniques

chain-of-thought 248, 249

few-shot learning 246-248

self-consistency prompting 249-251

Tree-of-Thought (ToT) prompting 251-255

zero-shot prompting 246

PromptWatch 294, 295

ProsusAI/finbert 91

Proximal Policy Optimization (PPO) 228

clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml

Q
quantization 230

R
Ray 280-284

Read-Eval-Print Loop (REPL) 73

reasoning strategies

exploring 121-128

reinforcement learning

with human feedback 228, 229

Reinforcement Learning with Human Feedback (RLHF) 26, 228

Replicate 82-84

reference link 83

Representational State Transfer Application Programming
Interface (REST API) 276

Retrieval-Augmented Generation (RAG) 44, 131, 134

Retrieval-Augmented Language Models (RALMs) 134

retrievers, LangChain 150

Arxiv retriever 151

BM25 retriever 150

custom retrievers 153

dense retriever 151

kNN retriever 151, 152

PubMed retriever 152

clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml

TF-IDF retriever 151

Wikipedia retriever 151

reverse diffusion process 29

S
self-consistency prompting 249-251

semantic search 143

similarity search 143

Simple Workflow Service (SWF) 209

Site Reliability Engineering (SRE) 286

small local model 187-189

Smart Generation System Personalized 314

societal implications 317

misinformation and cybersecurity 318

regulations and implementation challenges 319, 320

Software as a Service (SaaS) 84

software development

AI, using for 174, 175

automating 189-201

Splunk 290

SPTAG 143

Stable Diffusion 30

StarChat 184-186

StarCoder 179-184

stochastic parrots 38

Streamlit app 159

advantages 120

T
Technology Innovation Institute (TII) 19

Tensor Processing Units (TPUs) 85, 233

text-to-image models 27-32

applications 27

tokenization 24

token usage

monitoring 109-111

tools 55, 56

examples 55, 56

information, retrieving with 116, 117

questions, answering with 116

visual interface, building with 118-121

tracking 287

transformer-based models 137

transformers 13

architectural features 21

Tree-of-Thought (ToT) prompting 251-255

Turing test 132

clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml

U
U-Net 31

user interface (UI) 126

utility chains 50

V
Variational Autoencoders (VAEs) 10, 30

vector databases 143

anomaly detection 143

characteristics 144

examples 145-147

Natural Language Processing (NLP) 143

personalization 143

vector indexing 140

vector libraries 141-143

Annoy 142

Faiss 142

hnswlib 142

nmslib 142

SPTAG 143

vector search 135, 139

vector storage 135, 139

venture capitalists (VCs) 144

Visual Foundation Models (VFMs) 15

clbr://internal.invalid/book/OEBPS/Index.xhtml

W
Weights and Biases (W&B) 234

tracing 290

Wikipedia 117

Wolfram Alpha 117

reference link 118

Z
Zero-Shot agent 124

zero-shot chain-of-thought 249

zero-shot prompting 231, 246

Download a free PDF copy of

this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere? Is your eBook purchase not compatible with the device of
your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version
of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code
from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,
newsletters, and great free content in your inbox daily

clbr://internal.invalid/book/OEBPS/Index.xhtml
clbr://internal.invalid/book/OEBPS/Index.xhtml

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835083468

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email

directly

OceanofPDF.com

clbr://internal.invalid/book/OEBPS/Index.xhtml
https://oceanofpdf.com/

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Get in touch

	What Is Generative AI?
	Introducing generative AI
	What are generative models?
	Why now?

	Understanding LLMs
	What is a GPT?
	Other LLMs
	Major players
	How do GPT models work?
	Pre-training
	Tokenization
	Scaling
	Conditioning

	How to try out these models

	What are text-to-image models?
	What can AI do in other domains?
	Summary
	Questions
	Join our community on Discord

	LangChain for LLM Apps
	Going beyond stochastic parrots
	What are the limitations of LLMs?
	How can we mitigate LLM limitations?
	What is an LLM app?

	What is LangChain?
	Exploring key components of LangChain
	What are chains?
	What are agents?
	What is memory?
	What are tools?

	How does LangChain work?
	Comparing LangChain with other frameworks
	Summary
	Questions
	Join our community on Discord

	Getting Started with LangChain
	How to set up the dependencies for this book
	pip
	Poetry
	Conda
	Docker

	Exploring API model integrations
	Fake LLM
	OpenAI
	Hugging Face
	Google Cloud Platform
	Jina AI
	Replicate
	Others
	Azure
	Anthropic

	Exploring local models
	Hugging Face Transformers
	llama.cpp
	GPT4All

	Building an application for customer service
	Summary
	Questions
	Join our community on Discord

	Building Capable Assistants
	Mitigating hallucinations through fact-checking
	Summarizing information
	Basic prompting
	Prompt templates
	Chain of density
	Map-Reduce pipelines
	Monitoring token usage

	Extracting information from documents
	Answering questions with tools
	Information retrieval with tools
	Building a visual interface

	Exploring reasoning strategies
	Summary
	Questions
	Join our community on Discord

	Building a Chatbot like ChatGPT
	What is a chatbot?
	Understanding retrieval and vectors
	Embeddings
	Vector storage
	Vector indexing
	Vector libraries
	Vector databases

	Loading and retrieving in LangChain
	Document loaders
	Retrievers in LangChain
	kNN retriever
	PubMed retriever
	Custom retrievers

	Implementing a chatbot
	Document loader
	Vector storage
	Memory
	Conversation buffers
	Remembering conversation summaries
	Storing knowledge graphs
	Combining several memory mechanisms
	Long-term persistence

	Moderating responses
	Summary
	Questions
	Join our community on Discord

	Developing Software with Generative AI
	Software development and AI
	Code LLMs

	Writing code with LLMs
	StarCoder
	StarChat
	Llama 2
	Small local model

	Automating software development
	Summary
	Questions
	Join our community on Discord

	LLMs for Data Science
	The impact of generative models on data science
	Automated data science
	Data collection
	Visualization and EDA
	Preprocessing and feature extraction
	AutoML

	Using agents to answer data science questions
	Data exploration with LLMs
	Summary
	Questions
	Join our community on Discord

	Customizing LLMs and Their Output
	Conditioning LLMs
	Methods for conditioning
	Reinforcement learning with human feedback
	Low-rank adaptation
	Inference-time conditioning

	Fine-tuning
	Setup for fine-tuning
	Open-source models
	Commercial models

	Prompt engineering
	Prompt techniques
	Zero-shot prompting
	Few-shot learning
	Chain-of-thought prompting
	Self-consistency
	Tree-of-thought

	Summary
	Questions
	Join our community on Discord

	Generative AI in Production
	How to get LLM apps ready for production
	Terminology

	How to evaluate LLM apps
	Comparing two outputs
	Comparing against criteria
	String and semantic comparisons
	Running evaluations against datasets

	How to deploy LLM apps
	FastAPI web server
	Ray

	How to observe LLM apps
	Tracking responses
	Observability tools
	LangSmith
	PromptWatch

	Summary
	Questions
	Join our community on Discord

	The Future of Generative Models
	The current state of generative AI
	Challenges
	Trends in model development
	Big Tech vs. small enterprises
	Artificial General Intelligence

	Economic consequences
	Creative industries and advertising
	Education
	Law
	Manufacturing
	Medicine
	Military

	Societal implications
	Misinformation and cybersecurity
	Regulations and implementation challenges

	The road ahead
	Join our community on Discord
	Why subscribe?

	Other Books You May Enjoy
	Index

